Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21f Structured version   Unicode version

Theorem cdleme21f 36455
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme21.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme21.b  |-  B  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme21.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme21.e  |-  E  =  ( ( R  .\/  z )  ./\  W
)
cdleme21d.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme21d.z  |-  Z  =  ( ( P  .\/  Q )  ./\  ( B  .\/  E ) )
cdleme21.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme21.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme21.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
Assertion
Ref Expression
cdleme21f  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  O )

Proof of Theorem cdleme21f
StepHypRef Expression
1 simp11 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp31 1030 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
5 simp21 1027 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
6 simp231 1138 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  P  =/=  Q )
7 simp232 1139 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
8 simp32l 1119 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  R  .<_  ( P  .\/  Q ) )
97, 8jca 530 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )
10 simp33 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) )
11 cdleme21.l . . . 4  |-  .<_  =  ( le `  K )
12 cdleme21.j . . . 4  |-  .\/  =  ( join `  K )
13 cdleme21.m . . . 4  |-  ./\  =  ( meet `  K )
14 cdleme21.a . . . 4  |-  A  =  ( Atoms `  K )
15 cdleme21.h . . . 4  |-  H  =  ( LHyp `  K
)
16 cdleme21.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
17 cdleme21.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
18 cdleme21.b . . . 4  |-  B  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
19 cdleme21.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
20 cdleme21.e . . . 4  |-  E  =  ( ( R  .\/  z )  ./\  W
)
21 cdleme21d.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
22 cdleme21d.z . . . 4  |-  Z  =  ( ( P  .\/  Q )  ./\  ( B  .\/  E ) )
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cdleme21d 36453 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  Z )
241, 2, 3, 4, 5, 6, 9, 10, 23syl323anc 1256 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  Z )
25 cdleme21.g . . 3  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
26 cdleme21.y . . 3  |-  Y  =  ( ( R  .\/  T )  ./\  W )
27 cdleme21.o . . 3  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
2811, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27cdleme21e 36454 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  O  =  Z )
2924, 28eqtr4d 2498 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  O )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   lecple 14791   joincjn 15772   meetcmee 15773   Atomscatm 35385   HLchlt 35472   LHypclh 36105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-preset 15756  df-poset 15774  df-plt 15787  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-p1 15869  df-lat 15875  df-clat 15937  df-oposet 35298  df-ol 35300  df-oml 35301  df-covers 35388  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473  df-llines 35619  df-lplanes 35620  df-lvols 35621  df-lines 35622  df-psubsp 35624  df-pmap 35625  df-padd 35917  df-lhyp 36109
This theorem is referenced by:  cdleme21g  36456
  Copyright terms: Public domain W3C validator