Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21d Structured version   Unicode version

Theorem cdleme21d 34337
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 115, 3rd line.  D,  F,  N,  E,  B,  Z represent s2, f(s), fs(r), z2, f(z), fz(r) respectively. We prove fs(r) = fz(r). (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme21.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme21.b  |-  B  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme21.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme21.e  |-  E  =  ( ( R  .\/  z )  ./\  W
)
cdleme21d.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme21d.z  |-  Z  =  ( ( P  .\/  Q )  ./\  ( B  .\/  E ) )
Assertion
Ref Expression
cdleme21d  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  Z )

Proof of Theorem cdleme21d
StepHypRef Expression
1 simp11 1018 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12 1019 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1020 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp2l 1014 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
5 simp2r 1015 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
6 simp33l 1115 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( z  e.  A  /\  -.  z  .<_  W ) )
7 simp31 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  P  =/=  Q )
8 simp11l 1099 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  K  e.  HL )
9 simp12l 1101 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  P  e.  A )
10 simp13l 1103 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  Q  e.  A )
11 simp2rl 1057 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  S  e.  A )
12 simp32l 1113 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
136simpld 459 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
z  e.  A )
14 simp33r 1116 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  .\/  z
)  =  ( S 
.\/  z ) )
15 cdleme21.l . . . . 5  |-  .<_  =  ( le `  K )
16 cdleme21.j . . . . 5  |-  .\/  =  ( join `  K )
17 cdleme21.a . . . . 5  |-  A  =  ( Atoms `  K )
1815, 16, 17cdleme21a 34332 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  S  =/=  z )
198, 9, 10, 11, 12, 13, 14, 18syl322anc 1247 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  S  =/=  z )
207, 19jca 532 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( P  =/=  Q  /\  S  =/=  z
) )
2115, 16, 17cdleme21b 34333 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  -.  z  .<_  ( P 
.\/  Q ) )
228, 9, 10, 11, 7, 12, 13, 14, 21syl332anc 1250 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  z  .<_  ( P 
.\/  Q ) )
23 simp32r 1114 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  R  .<_  ( P  .\/  Q ) )
2412, 22, 233jca 1168 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  -> 
( -.  S  .<_  ( P  .\/  Q )  /\  -.  z  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )
25 cdleme21.m . . . 4  |-  ./\  =  ( meet `  K )
26 cdleme21.h . . . 4  |-  H  =  ( LHyp `  K
)
27 cdleme21.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2815, 16, 25, 17, 26, 27cdleme21c 34334 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  U  .<_  ( S  .\/  z ) )
291, 2, 10, 11, 7, 12, 13, 14, 28syl332anc 1250 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  -.  U  .<_  ( S 
.\/  z ) )
30 cdleme21.f . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
31 cdleme21.b . . 3  |-  B  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
32 cdleme21.d . . 3  |-  D  =  ( ( R  .\/  S )  ./\  W )
33 cdleme21.e . . 3  |-  E  =  ( ( R  .\/  z )  ./\  W
)
34 eqid 2454 . . 3  |-  ( ( S  .\/  z ) 
./\  W )  =  ( ( S  .\/  z )  ./\  W
)
35 cdleme21d.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
36 cdleme21d.z . . 3  |-  Z  =  ( ( P  .\/  Q )  ./\  ( B  .\/  E ) )
3715, 16, 25, 17, 26, 27, 30, 31, 32, 33, 34, 35, 36cdleme20 34331 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  z )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  z ) ) )  ->  N  =  Z )
381, 2, 3, 4, 5, 6, 20, 24, 29, 37syl333anc 1251 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   lecple 14368   joincjn 15237   meetcmee 15238   Atomscatm 33271   HLchlt 33358   LHypclh 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-poset 15239  df-plt 15251  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-p0 15332  df-p1 15333  df-lat 15339  df-clat 15401  df-oposet 33184  df-ol 33186  df-oml 33187  df-covers 33274  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-llines 33505  df-lplanes 33506  df-lvols 33507  df-lines 33508  df-psubsp 33510  df-pmap 33511  df-padd 33803  df-lhyp 33995
This theorem is referenced by:  cdleme21f  34339
  Copyright terms: Public domain W3C validator