Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21c Structured version   Unicode version

Theorem cdleme21c 36175
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme21c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  U  .<_  ( S  .\/  z ) )

Proof of Theorem cdleme21c
StepHypRef Expression
1 simp23 1031 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
2 simp11l 1107 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  K  e.  HL )
3 hlcvl 35206 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CvLat )
42, 3syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  K  e.  CvLat )
5 simp12l 1109 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  P  e.  A
)
6 simp21 1029 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  S  e.  A
)
7 simp3l 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  z  e.  A
)
8 simp13 1028 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  Q  e.  A
)
9 cdleme21.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
10 cdleme21.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
11 cdleme21.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
129, 10, 11atnlej1 35225 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  =/=  P )
1312necomd 2728 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  S )
142, 6, 5, 8, 1, 13syl131anc 1241 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  P  =/=  S
)
15 simp3r 1025 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  z )  =  ( S  .\/  z ) )
1611, 10cvlsupr7 35195 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  z  e.  A )  /\  ( P  =/=  S  /\  ( P  .\/  z
)  =  ( S 
.\/  z ) ) )  ->  ( P  .\/  S )  =  ( z  .\/  S ) )
174, 5, 6, 7, 14, 15, 16syl132anc 1246 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  S )  =  ( z 
.\/  S ) )
1810, 11hlatjcom 35214 . . . . . 6  |-  ( ( K  e.  HL  /\  z  e.  A  /\  S  e.  A )  ->  ( z  .\/  S
)  =  ( S 
.\/  z ) )
192, 7, 6, 18syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( z  .\/  S )  =  ( S 
.\/  z ) )
2017, 19eqtrd 2498 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  S )  =  ( S 
.\/  z ) )
2120breq2d 4468 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( U  .<_  ( P  .\/  S )  <-> 
U  .<_  ( S  .\/  z ) ) )
22 simp11r 1108 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  W  e.  H
)
23 simp12r 1110 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  P  .<_  W )
24 simp22 1030 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  P  =/=  Q
)
25 cdleme21.m . . . . . . 7  |-  ./\  =  ( meet `  K )
26 cdleme21.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
27 cdleme21.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
289, 10, 25, 11, 26, 27cdleme0a 36058 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
292, 22, 5, 23, 8, 24, 28syl222anc 1244 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  U  e.  A
)
30 hllat 35210 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
312, 30syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  K  e.  Lat )
32 eqid 2457 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
3332, 10, 11hlatjcl 35213 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
342, 5, 8, 33syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
3532, 26lhpbase 35844 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3622, 35syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  W  e.  (
Base `  K )
)
3732, 9, 25latmle2 15834 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
3831, 34, 36, 37syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  W )
3927, 38syl5eqbr 4489 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  U  .<_  W )
40 nbrne2 4474 . . . . . 6  |-  ( ( U  .<_  W  /\  -.  P  .<_  W )  ->  U  =/=  P
)
4139, 23, 40syl2anc 661 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  U  =/=  P
)
429, 10, 11cvlatexch1 35183 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( U  e.  A  /\  S  e.  A  /\  P  e.  A )  /\  U  =/=  P
)  ->  ( U  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  U ) ) )
434, 29, 6, 5, 41, 42syl131anc 1241 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( U  .<_  ( P  .\/  S )  ->  S  .<_  ( P 
.\/  U ) ) )
449, 10, 11hlatlej1 35221 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
452, 5, 8, 44syl3anc 1228 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  P  .<_  ( P 
.\/  Q ) )
469, 10, 25, 11, 26, 27cdlemeulpq 36067 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
472, 22, 5, 8, 46syl22anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  U  .<_  ( P 
.\/  Q ) )
4832, 11atbase 35136 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
495, 48syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  P  e.  (
Base `  K )
)
5032, 11atbase 35136 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
5129, 50syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  U  e.  (
Base `  K )
)
5232, 9, 10latjle12 15819 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  Q )  /\  U  .<_  ( P 
.\/  Q ) )  <-> 
( P  .\/  U
)  .<_  ( P  .\/  Q ) ) )
5331, 49, 51, 34, 52syl13anc 1230 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( ( P 
.<_  ( P  .\/  Q
)  /\  U  .<_  ( P  .\/  Q ) )  <->  ( P  .\/  U )  .<_  ( P  .\/  Q ) ) )
5445, 47, 53mpbi2and 921 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  U )  .<_  ( P  .\/  Q ) )
5532, 11atbase 35136 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
566, 55syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  S  e.  (
Base `  K )
)
5732, 10, 11hlatjcl 35213 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
582, 5, 29, 57syl3anc 1228 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  U )  e.  ( Base `  K ) )
5932, 9lattr 15813 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( S  .<_  ( P 
.\/  U )  /\  ( P  .\/  U ) 
.<_  ( P  .\/  Q
) )  ->  S  .<_  ( P  .\/  Q
) ) )
6031, 56, 58, 34, 59syl13anc 1230 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( ( S 
.<_  ( P  .\/  U
)  /\  ( P  .\/  U )  .<_  ( P 
.\/  Q ) )  ->  S  .<_  ( P 
.\/  Q ) ) )
6154, 60mpan2d 674 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( S  .<_  ( P  .\/  U )  ->  S  .<_  ( P 
.\/  Q ) ) )
6243, 61syld 44 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( U  .<_  ( P  .\/  S )  ->  S  .<_  ( P 
.\/  Q ) ) )
6321, 62sylbird 235 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( U  .<_  ( S  .\/  z )  ->  S  .<_  ( P 
.\/  Q ) ) )
641, 63mtod 177 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( S  e.  A  /\  P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
) )  /\  (
z  e.  A  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  U  .<_  ( S  .\/  z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14644   lecple 14719   joincjn 15700   meetcmee 15701   Latclat 15802   Atomscatm 35110   CvLatclc 35112   HLchlt 35197   LHypclh 35830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35023  df-ol 35025  df-oml 35026  df-covers 35113  df-ats 35114  df-atl 35145  df-cvlat 35169  df-hlat 35198  df-lhyp 35834
This theorem is referenced by:  cdleme21at  36176  cdleme21ct  36177  cdleme21d  36178
  Copyright terms: Public domain W3C validator