Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20l1 Unicode version

Theorem cdleme20l1 29198
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line.  D,  F,  Y,  G represent s2, f(s), t2, f(t) respectively. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20l1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( F  .\/  D )  e.  ( LLines `  K )
)

Proof of Theorem cdleme20l1
StepHypRef Expression
1 simp11l 1071 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
2 simp11 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp12 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp13 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5 simp22 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
6 simp23 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
75, 6jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
8 simp31 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  Q )
9 simp32 997 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
10 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
11 cdleme19.j . . . 4  |-  .\/  =  ( join `  K )
12 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
13 cdleme19.a . . . 4  |-  A  =  ( Atoms `  K )
14 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
15 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
16 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
1710, 11, 12, 13, 14, 15, 16cdleme3fa 29114 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
182, 3, 4, 7, 8, 9, 17syl132anc 1205 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  F  e.  A )
19 simp11r 1072 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
20 simp21 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
21 simp33 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
22 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
2310, 11, 12, 13, 14, 22cdlemeda 29176 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  D  e.  A )
241, 19, 5, 6, 20, 21, 9, 23syl223anc 1213 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  D  e.  A )
2510, 11, 12, 13, 14, 15, 16, 16, 22, 22cdleme19c 29183 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  D )
261, 19, 3, 4, 7, 20, 8, 9, 25syl233anc 1216 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  F  =/=  D )
27 eqid 2253 . . 3  |-  ( LLines `  K )  =  (
LLines `  K )
2811, 13, 27llni2 28390 . 2  |-  ( ( ( K  e.  HL  /\  F  e.  A  /\  D  e.  A )  /\  F  =/=  D
)  ->  ( F  .\/  D )  e.  (
LLines `  K ) )
291, 18, 24, 26, 28syl31anc 1190 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( F  .\/  D )  e.  ( LLines `  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28142   HLchlt 28229   LLinesclln 28369   LHypclh 28862
This theorem is referenced by:  cdleme20l2  29199  cdleme20l  29200
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866
  Copyright terms: Public domain W3C validator