Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20k Structured version   Unicode version

Theorem cdleme20k 33792
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, antepenultimate line.  D,  F,  Y,  G represent s2, f(s), t2, f(t). (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20k  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( F  .\/  D )  =/=  ( P  .\/  Q ) )

Proof of Theorem cdleme20k
StepHypRef Expression
1 simp11 1035 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1036 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
3 simp13 1037 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
4 simp2r 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5 simp2l 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
6 simp3r 1034 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
7 simp3l 1033 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
8 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
9 cdleme19.j . . . 4  |-  .\/  =  ( join `  K )
10 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
11 cdleme19.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
148, 9, 10, 11, 12, 13cdlemednpq 33771 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  D  .<_  ( P 
.\/  Q ) )
151, 2, 3, 4, 5, 6, 7, 14syl133anc 1287 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  -.  D  .<_  ( P  .\/  Q
) )
16 simp11l 1116 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
17 hllat 32835 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
1816, 17syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
19 simp11r 1117 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
20 simp2ll 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
21 cdleme19.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
22 cdleme19.f . . . . . . 7  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
23 eqid 2422 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
248, 9, 10, 11, 12, 21, 22, 23cdleme1b 33698 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
2516, 19, 2, 3, 20, 24syl23anc 1271 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  ( Base `  K )
)
26 simp2rl 1074 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
278, 9, 10, 11, 12, 13, 23cdlemedb 33769 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  D  e.  ( Base `  K ) )
2816, 19, 26, 20, 27syl22anc 1265 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  D  e.  ( Base `  K )
)
2923, 8, 9latlej2 16243 . . . . 5  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  D  e.  ( Base `  K
) )  ->  D  .<_  ( F  .\/  D
) )
3018, 25, 28, 29syl3anc 1264 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  D  .<_  ( F  .\/  D ) )
31 breq2 4363 . . . 4  |-  ( ( F  .\/  D )  =  ( P  .\/  Q )  ->  ( D  .<_  ( F  .\/  D
)  <->  D  .<_  ( P 
.\/  Q ) ) )
3230, 31syl5ibcom 223 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( ( F  .\/  D )  =  ( P  .\/  Q
)  ->  D  .<_  ( P  .\/  Q ) ) )
3332necon3bd 2609 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( -.  D  .<_  ( P  .\/  Q )  ->  ( F  .\/  D )  =/=  ( P  .\/  Q ) ) )
3415, 33mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) )  ->  ( F  .\/  D )  =/=  ( P  .\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2593   class class class wbr 4359   ` cfv 5537  (class class class)co 6242   Basecbs 15057   lecple 15133   joincjn 16125   meetcmee 16126   Latclat 16227   Atomscatm 32735   HLchlt 32822   LHypclh 33455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-rep 4472  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-ral 2713  df-rex 2714  df-reu 2715  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-op 3941  df-uni 4156  df-iun 4237  df-iin 4238  df-br 4360  df-opab 4419  df-mpt 4420  df-id 4704  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-1st 6744  df-2nd 6745  df-preset 16109  df-poset 16127  df-plt 16140  df-lub 16156  df-glb 16157  df-join 16158  df-meet 16159  df-p0 16221  df-p1 16222  df-lat 16228  df-clat 16290  df-oposet 32648  df-ol 32650  df-oml 32651  df-covers 32738  df-ats 32739  df-atl 32770  df-cvlat 32794  df-hlat 32823  df-psubsp 32974  df-pmap 32975  df-padd 33267  df-lhyp 33459
This theorem is referenced by:  cdleme20l  33795
  Copyright terms: Public domain W3C validator