Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20c Structured version   Unicode version

Theorem cdleme20c 33311
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line.  D,  F,  Y,  G represent s2, f(s), t2, f(t). (Contributed by NM, 15-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( D  .\/  Y )  =  ( ( ( R 
.\/  S )  .\/  T )  ./\  W )
)

Proof of Theorem cdleme20c
StepHypRef Expression
1 simp1l 1021 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
2 simp21l 1114 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
3 simp22l 1116 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
4 eqid 2402 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
5 cdleme19.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
6 cdleme19.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
74, 5, 6hlatjcl 32365 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
81, 2, 3, 7syl3anc 1230 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .\/  S )  e.  ( Base `  K
) )
9 simp1r 1022 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
10 cdleme19.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
114, 10lhpbase 32996 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
129, 11syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  ( Base `  K
) )
13 cdleme19.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
1413, 5, 6hlatlej1 32373 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  R  .<_  ( R  .\/  S ) )
151, 2, 3, 14syl3anc 1230 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( R  .\/  S
) )
16 cdleme19.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
174, 13, 5, 16, 6atmod2i1 32859 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  S
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  R  .<_  ( R  .\/  S
) )  ->  (
( ( R  .\/  S )  ./\  W )  .\/  R )  =  ( ( R  .\/  S
)  ./\  ( W  .\/  R ) ) )
181, 2, 8, 12, 15, 17syl131anc 1243 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( R  .\/  S )  ./\  W )  .\/  R )  =  ( ( R  .\/  S
)  ./\  ( W  .\/  R ) ) )
19 simp21 1030 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
20 eqid 2402 . . . . . . . . . 10  |-  ( 1.
`  K )  =  ( 1. `  K
)
2113, 5, 20, 6, 10lhpjat1 33018 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( W  .\/  R
)  =  ( 1.
`  K ) )
221, 9, 19, 21syl21anc 1229 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( W  .\/  R )  =  ( 1. `  K
) )
2322oveq2d 6250 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( R  .\/  S
)  ./\  ( W  .\/  R ) )  =  ( ( R  .\/  S )  ./\  ( 1. `  K ) ) )
24 hlol 32360 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OL )
251, 24syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  OL )
264, 16, 20olm11 32226 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  ( Base `  K
) )  ->  (
( R  .\/  S
)  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2725, 8, 26syl2anc 659 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( R  .\/  S
)  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2818, 23, 273eqtrrd 2448 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .\/  S )  =  ( ( ( R 
.\/  S )  ./\  W )  .\/  R ) )
2928oveq1d 6249 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( R  .\/  S
)  .\/  T )  =  ( ( ( ( R  .\/  S
)  ./\  W )  .\/  R )  .\/  T
) )
30 simp22r 1117 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
31 simp3r 1026 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
32 simp3l 1025 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
33 eqid 2402 . . . . . . . 8  |-  ( ( R  .\/  S ) 
./\  W )  =  ( ( R  .\/  S )  ./\  W )
3413, 5, 16, 6, 10, 33cdlemeda 33297 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  A )
351, 9, 3, 30, 2, 31, 32, 34syl223anc 1256 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( R  .\/  S
)  ./\  W )  e.  A )
36 simp23 1032 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  A )
375, 6hlatjass 32368 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( ( R 
.\/  S )  ./\  W )  e.  A  /\  R  e.  A  /\  T  e.  A )
)  ->  ( (
( ( R  .\/  S )  ./\  W )  .\/  R )  .\/  T
)  =  ( ( ( R  .\/  S
)  ./\  W )  .\/  ( R  .\/  T
) ) )
381, 35, 2, 36, 37syl13anc 1232 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( ( R 
.\/  S )  ./\  W )  .\/  R ) 
.\/  T )  =  ( ( ( R 
.\/  S )  ./\  W )  .\/  ( R 
.\/  T ) ) )
3929, 38eqtrd 2443 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( R  .\/  S
)  .\/  T )  =  ( ( ( R  .\/  S ) 
./\  W )  .\/  ( R  .\/  T ) ) )
4039oveq1d 6249 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( R  .\/  S )  .\/  T ) 
./\  W )  =  ( ( ( ( R  .\/  S ) 
./\  W )  .\/  ( R  .\/  T ) )  ./\  W )
)
414, 5, 6hlatjcl 32365 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  T  e.  A )  ->  ( R  .\/  T
)  e.  ( Base `  K ) )
421, 2, 36, 41syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .\/  T )  e.  ( Base `  K
) )
43 hllat 32362 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
441, 43syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
454, 13, 16latmle2 15923 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
4644, 8, 12, 45syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( R  .\/  S
)  ./\  W )  .<_  W )
474, 13, 5, 16, 6atmod1i1 32855 . . . 4  |-  ( ( K  e.  HL  /\  ( ( ( R 
.\/  S )  ./\  W )  e.  A  /\  ( R  .\/  T )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  /\  ( ( R  .\/  S )  ./\  W )  .<_  W )  ->  ( ( ( R 
.\/  S )  ./\  W )  .\/  ( ( R  .\/  T ) 
./\  W ) )  =  ( ( ( ( R  .\/  S
)  ./\  W )  .\/  ( R  .\/  T
) )  ./\  W
) )
481, 35, 42, 12, 46, 47syl131anc 1243 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( R  .\/  S )  ./\  W )  .\/  ( ( R  .\/  T )  ./\  W )
)  =  ( ( ( ( R  .\/  S )  ./\  W )  .\/  ( R  .\/  T
) )  ./\  W
) )
4940, 48eqtr4d 2446 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( R  .\/  S )  .\/  T ) 
./\  W )  =  ( ( ( R 
.\/  S )  ./\  W )  .\/  ( ( R  .\/  T ) 
./\  W ) ) )
50 cdleme19.d . . 3  |-  D  =  ( ( R  .\/  S )  ./\  W )
51 cdleme19.y . . 3  |-  Y  =  ( ( R  .\/  T )  ./\  W )
5250, 51oveq12i 6246 . 2  |-  ( D 
.\/  Y )  =  ( ( ( R 
.\/  S )  ./\  W )  .\/  ( ( R  .\/  T ) 
./\  W ) )
5349, 52syl6reqr 2462 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( D  .\/  Y )  =  ( ( ( R 
.\/  S )  .\/  T )  ./\  W )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4394   ` cfv 5525  (class class class)co 6234   Basecbs 14733   lecple 14808   joincjn 15789   meetcmee 15790   1.cp1 15884   Latclat 15891   OLcol 32173   Atomscatm 32262   HLchlt 32349   LHypclh 32982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-1st 6738  df-2nd 6739  df-preset 15773  df-poset 15791  df-plt 15804  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-p0 15885  df-p1 15886  df-lat 15892  df-clat 15954  df-oposet 32175  df-ol 32177  df-oml 32178  df-covers 32265  df-ats 32266  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-psubsp 32501  df-pmap 32502  df-padd 32794  df-lhyp 32986
This theorem is referenced by:  cdleme20d  33312
  Copyright terms: Public domain W3C validator