Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20aN Structured version   Unicode version

Theorem cdleme20aN 33328
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114.  D,  F,  Y,  G represent s2, f(s), t2, f(t). (Contributed by NM, 14-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20aN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )

Proof of Theorem cdleme20aN
StepHypRef Expression
1 cdleme20.v . . 3  |-  V  =  ( ( S  .\/  T )  ./\  W )
21oveq1i 6288 . 2  |-  ( V 
.\/  D )  =  ( ( ( S 
.\/  T )  ./\  W )  .\/  D )
3 simp1l 1021 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
4 simp1r 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
5 simp22 1031 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
6 simp23 1032 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
7 simp21 1030 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
8 simp33 1035 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
9 simp32 1034 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
10 cdleme19.l . . . . . 6  |-  .<_  =  ( le `  K )
11 cdleme19.j . . . . . 6  |-  .\/  =  ( join `  K )
12 cdleme19.m . . . . . 6  |-  ./\  =  ( meet `  K )
13 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
14 cdleme19.h . . . . . 6  |-  H  =  ( LHyp `  K
)
15 cdleme19.d . . . . . 6  |-  D  =  ( ( R  .\/  S )  ./\  W )
1610, 11, 12, 13, 14, 15cdlemeda 33316 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  D  e.  A )
173, 4, 5, 6, 7, 8, 9, 16syl223anc 1256 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  D  e.  A )
18 simp31 1033 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  A )
19 eqid 2402 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2019, 11, 13hlatjcl 32384 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
213, 5, 18, 20syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
2219, 14lhpbase 33015 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
234, 22syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  ( Base `  K ) )
24 hllat 32381 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
253, 24syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
2619, 11, 13hlatjcl 32384 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
273, 7, 5, 26syl3anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
2819, 10, 12latmle2 16031 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
2925, 27, 23, 28syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( R  .\/  S )  ./\  W )  .<_  W )
3015, 29syl5eqbr 4428 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  D  .<_  W )
3119, 10, 11, 12, 13atmod4i1 32883 . . . 4  |-  ( ( K  e.  HL  /\  ( D  e.  A  /\  ( S  .\/  T
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  D  .<_  W )  ->  (
( ( S  .\/  T )  ./\  W )  .\/  D )  =  ( ( ( S  .\/  T )  .\/  D ) 
./\  W ) )
323, 17, 21, 23, 30, 31syl131anc 1243 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( S 
.\/  T )  ./\  W )  .\/  D )  =  ( ( ( S  .\/  T ) 
.\/  D )  ./\  W ) )
3310, 11, 12, 13, 14, 15cdleme10 33272 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( S  .\/  D )  =  ( S  .\/  R ) )
343, 4, 7, 5, 6, 33syl212anc 1240 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  D
)  =  ( S 
.\/  R ) )
3534oveq1d 6293 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( S  .\/  D )  .\/  T )  =  ( ( S 
.\/  R )  .\/  T ) )
3611, 13hlatj32 32389 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  D  e.  A  /\  T  e.  A
) )  ->  (
( S  .\/  D
)  .\/  T )  =  ( ( S 
.\/  T )  .\/  D ) )
373, 5, 17, 18, 36syl13anc 1232 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( S  .\/  D )  .\/  T )  =  ( ( S 
.\/  T )  .\/  D ) )
3835, 37eqtr3d 2445 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( S  .\/  R )  .\/  T )  =  ( ( S 
.\/  T )  .\/  D ) )
3938oveq1d 6293 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( S 
.\/  R )  .\/  T )  ./\  W )  =  ( ( ( S  .\/  T ) 
.\/  D )  ./\  W ) )
4032, 39eqtr4d 2446 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( S 
.\/  T )  ./\  W )  .\/  D )  =  ( ( ( S  .\/  R ) 
.\/  T )  ./\  W ) )
412, 40syl5eq 2455 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   Latclat 15999   Atomscatm 32281   HLchlt 32368   LHypclh 33001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005
This theorem is referenced by:  cdleme20bN  33329
  Copyright terms: Public domain W3C validator