Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Structured version   Unicode version

Theorem cdleme1b 34233
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing  F is a lattice element.  F represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme1.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme1b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  B )

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
2 hllat 33371 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
32ad2antrr 725 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  K  e.  Lat )
4 simpr3 996 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  R  e.  A )
5 cdleme1.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme1.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 33297 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
84, 7syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  R  e.  B )
9 cdleme1.l . . . . . 6  |-  .<_  =  ( le `  K )
10 cdleme1.j . . . . . 6  |-  .\/  =  ( join `  K )
11 cdleme1.m . . . . . 6  |-  ./\  =  ( meet `  K )
12 cdleme1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdleme1.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
149, 10, 11, 6, 12, 13, 5cdleme0aa 34217 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )
15143adant3r3 1199 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  U  e.  B )
165, 10latjcl 15344 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  B  /\  U  e.  B )  ->  ( R  .\/  U
)  e.  B )
173, 8, 15, 16syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( R  .\/  U
)  e.  B )
18 simpr2 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  Q  e.  A )
195, 6atbase 33297 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
2018, 19syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  Q  e.  B )
21 simpr1 994 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  P  e.  A )
225, 6atbase 33297 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
2321, 22syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  P  e.  B )
245, 10latjcl 15344 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  R  e.  B )  ->  ( P  .\/  R
)  e.  B )
253, 23, 8, 24syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( P  .\/  R
)  e.  B )
265, 12lhpbase 34005 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
2726ad2antlr 726 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  W  e.  B )
285, 11latmcl 15345 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  R
)  ./\  W )  e.  B )
293, 25, 27, 28syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( ( P  .\/  R )  ./\  W )  e.  B )
305, 10latjcl 15344 . . . 4  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( ( P  .\/  R )  ./\  W )  e.  B )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  B
)
313, 20, 29, 30syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( Q  .\/  (
( P  .\/  R
)  ./\  W )
)  e.  B )
325, 11latmcl 15345 . . 3  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  B  /\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  B
)  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  e.  B )
333, 17, 31, 32syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  e.  B
)
341, 33syl5eqel 2546 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5529  (class class class)co 6203   Basecbs 14296   lecple 14368   joincjn 15237   meetcmee 15238   Latclat 15338   Atomscatm 33271   HLchlt 33358   LHypclh 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-lat 15339  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-lhyp 33995
This theorem is referenced by:  cdleme3c  34237  cdleme4a  34246  cdleme5  34247  cdleme7e  34254  cdleme11  34277  cdleme15  34285  cdleme22gb  34301  cdleme19b  34311  cdleme19e  34314  cdleme20d  34319  cdleme20j  34325  cdleme20k  34326  cdleme20l2  34328  cdleme20l  34329  cdleme20m  34330  cdleme22e  34351  cdleme22eALTN  34352  cdleme22f  34353  cdleme27cl  34373  cdlemefr27cl  34410  cdleme35fnpq  34456
  Copyright terms: Public domain W3C validator