Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19c Structured version   Unicode version

Theorem cdleme19c 36174
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line.  D,  F represent s2, f(s). We prove f(s)  =/= s2. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme19c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  D )

Proof of Theorem cdleme19c
StepHypRef Expression
1 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
2 simp1l 1020 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
3 hllat 35231 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
5 simp31 1032 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
6 simp23l 1117 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
7 eqid 2457 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme19.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 cdleme19.a . . . . . . 7  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 35234 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  S )  e.  (
Base `  K )
)
12 simp1r 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
13 cdleme19.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
147, 13lhpbase 35865 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1512, 14syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  ( Base `  K )
)
16 cdleme19.l . . . . . 6  |-  .<_  =  ( le `  K )
17 cdleme19.m . . . . . 6  |-  ./\  =  ( meet `  K )
187, 16, 17latmle2 15834 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
194, 11, 15, 18syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
201, 19syl5eqbr 4489 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  D  .<_  W )
21 simp32 1033 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
22 simp33 1034 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
2321, 22jca 532 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )
24 cdleme19.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
25 cdleme19.f . . . . 5  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
2616, 8, 17, 9, 13, 24, 25cdleme3 36105 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  F  .<_  W )
2723, 26syld3an3 1273 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  F  .<_  W )
28 nbrne2 4474 . . 3  |-  ( ( D  .<_  W  /\  -.  F  .<_  W )  ->  D  =/=  F
)
2920, 27, 28syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  D  =/=  F )
3029necomd 2728 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14644   lecple 14719   joincjn 15700   meetcmee 15701   Latclat 15802   Atomscatm 35131   HLchlt 35218   LHypclh 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-lines 35368  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855
This theorem is referenced by:  cdleme19d  36175  cdleme20l1  36189
  Copyright terms: Public domain W3C validator