Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19a Unicode version

Theorem cdleme19a 30785
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line.  D represents s2. In their notation, we prove that if r  <_ s  \/ t, then s2=(s  \/ t)  /\ w. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme19a  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  D  =  ( ( S 
.\/  T )  ./\  W ) )

Proof of Theorem cdleme19a
StepHypRef Expression
1 cdleme19.d . 2  |-  D  =  ( ( R  .\/  S )  ./\  W )
2 eqid 2404 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
4 hllat 29846 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
543ad2ant1 978 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
6 simp1 957 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
7 simp21 990 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  e.  A )
8 simp22 991 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
9 cdleme19.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
112, 9, 10hlatjcl 29849 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
126, 7, 8, 11syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  e.  ( Base `  K
) )
13 simp23 992 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
142, 9, 10hlatjcl 29849 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
156, 8, 13, 14syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( S  .\/  T )  e.  ( Base `  K
) )
16 simp33 995 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  .<_  ( S  .\/  T
) )
173, 9, 10hlatlej1 29857 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  S  .<_  ( S  .\/  T ) )
186, 8, 13, 17syl3anc 1184 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  .<_  ( S  .\/  T
) )
192, 10atbase 29772 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
207, 19syl 16 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  e.  ( Base `  K
) )
212, 10atbase 29772 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
228, 21syl 16 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  e.  ( Base `  K
) )
232, 3, 9latjle12 14446 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  ( S  .\/  T )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( R  .\/  S
)  .<_  ( S  .\/  T ) ) )
245, 20, 22, 15, 23syl13anc 1186 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  (
( R  .<_  ( S 
.\/  T )  /\  S  .<_  ( S  .\/  T ) )  <->  ( R  .\/  S )  .<_  ( S 
.\/  T ) ) )
2516, 18, 24mpbi2and 888 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  .<_  ( S  .\/  T ) )
263, 9, 10hlatlej2 29858 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  S  .<_  ( R  .\/  S ) )
276, 7, 8, 26syl3anc 1184 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  .<_  ( R  .\/  S
) )
28 hlcvl 29842 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
29283ad2ant1 978 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  K  e.  CvLat )
30 simp31 993 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  .<_  ( P  .\/  Q
) )
31 simp32 994 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
32 nbrne2 4190 . . . . . . . . 9  |-  ( ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  R  =/=  S )
3330, 31, 32syl2anc 643 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  =/=  S )
343, 9, 10cvlatexch1 29819 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( R  e.  A  /\  T  e.  A  /\  S  e.  A )  /\  R  =/=  S
)  ->  ( R  .<_  ( S  .\/  T
)  ->  T  .<_  ( S  .\/  R ) ) )
3529, 7, 13, 8, 33, 34syl131anc 1197 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .<_  ( S  .\/  T )  ->  T  .<_  ( S  .\/  R ) ) )
3616, 35mpd 15 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  .<_  ( S  .\/  R
) )
379, 10hlatjcom 29850 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  =  ( S 
.\/  R ) )
386, 7, 8, 37syl3anc 1184 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  =  ( S  .\/  R
) )
3936, 38breqtrrd 4198 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  .<_  ( R  .\/  S
) )
402, 10atbase 29772 . . . . . . 7  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
4113, 40syl 16 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  e.  ( Base `  K
) )
422, 3, 9latjle12 14446 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( R  .\/  S )  /\  T  .<_  ( R 
.\/  S ) )  <-> 
( S  .\/  T
)  .<_  ( R  .\/  S ) ) )
435, 22, 41, 12, 42syl13anc 1186 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  (
( S  .<_  ( R 
.\/  S )  /\  T  .<_  ( R  .\/  S ) )  <->  ( S  .\/  T )  .<_  ( R 
.\/  S ) ) )
4427, 39, 43mpbi2and 888 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( S  .\/  T )  .<_  ( R  .\/  S ) )
452, 3, 5, 12, 15, 25, 44latasymd 14441 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  =  ( S  .\/  T
) )
4645oveq1d 6055 . 2  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  (
( R  .\/  S
)  ./\  W )  =  ( ( S 
.\/  T )  ./\  W ) )
471, 46syl5eq 2448 1  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  D  =  ( ( S 
.\/  T )  ./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Latclat 14429   Atomscatm 29746   CvLatclc 29748   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme19b  30786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-join 14388  df-lat 14430  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834
  Copyright terms: Public domain W3C validator