Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17d2 Structured version   Unicode version

Theorem cdleme17d2 33974
Description: Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph.  F,  G represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b  |-  B  =  ( Base `  K
)
cdlemef46.l  |-  .<_  =  ( le `  K )
cdlemef46.j  |-  .\/  =  ( join `  K )
cdlemef46.m  |-  ./\  =  ( meet `  K )
cdlemef46.a  |-  A  =  ( Atoms `  K )
cdlemef46.h  |-  H  =  ( LHyp `  K
)
cdlemef46.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme17d2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F `  P )  =  Q )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    S, s, t, x, y, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme17d2
StepHypRef Expression
1 simp1 1005 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp2l 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  Q )
3 simp12 1036 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp2r 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
5 simp11l 1116 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  HL )
6 simp12l 1118 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  A )
7 simp13l 1120 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  A )
8 cdlemef46.l . . . . 5  |-  .<_  =  ( le `  K )
9 cdlemef46.j . . . . 5  |-  .\/  =  ( join `  K )
10 cdlemef46.a . . . . 5  |-  A  =  ( Atoms `  K )
118, 9, 10hlatlej1 32852 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
125, 6, 7, 11syl3anc 1264 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  .<_  ( P  .\/  Q
) )
13 simp3 1007 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
14 cdlemef46.b . . . 4  |-  B  =  ( Base `  K
)
15 cdlemef46.m . . . 4  |-  ./\  =  ( meet `  K )
16 cdlemef46.h . . . 4  |-  H  =  ( LHyp `  K
)
17 cdlemef46.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdlemef46.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
19 cdlemef46.f . . . 4  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
20 cdlemefs46.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
2114, 8, 9, 15, 10, 16, 17, 18, 19, 20cdlemefs45 33908 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( F `  P )  =  [_ P  /  s ]_ [_ S  /  t ]_ E
)
221, 2, 3, 4, 12, 13, 21syl132anc 1282 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F `  P )  =  [_ P  /  s ]_ [_ S  /  t ]_ E )
23 simp2rl 1074 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  A )
24 eqid 2428 . . . 4  |-  ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
25 eqid 2428 . . . 4  |-  ( ( P  .\/  Q ) 
./\  ( ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( P  .\/  S
)  ./\  W )
) )  =  ( ( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( P  .\/  S
)  ./\  W )
) )
2618, 20, 24, 25cdleme31sde 33864 . . 3  |-  ( ( P  e.  A  /\  S  e.  A )  ->  [_ P  /  s ]_ [_ S  /  t ]_ E  =  (
( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( P  .\/  S
)  ./\  W )
) ) )
276, 23, 26syl2anc 665 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  [_ P  /  s ]_ [_ S  /  t ]_ E  =  ( ( P 
.\/  Q )  ./\  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  .\/  ( ( P  .\/  S ) 
./\  W ) ) ) )
28 simp11 1035 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
298, 9, 15, 10, 16, 17, 24, 25cdleme17d1 33767 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( P  .\/  S
)  ./\  W )
) )  =  Q )
3028, 3, 7, 4, 13, 29syl131anc 1277 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( P  .\/  S
)  ./\  W )
) )  =  Q )
3122, 27, 303eqtrd 2466 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F `  P )  =  Q )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   [_csb 3338   ifcif 3854   class class class wbr 4366    |-> cmpt 4425   ` cfv 5544   iota_crio 6210  (class class class)co 6249   Basecbs 15064   lecple 15140   joincjn 16132   meetcmee 16133   Atomscatm 32741   HLchlt 32828   LHypclh 33461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-riotaBAD 32437
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-1st 6751  df-2nd 6752  df-undef 6975  df-preset 16116  df-poset 16134  df-plt 16147  df-lub 16163  df-glb 16164  df-join 16165  df-meet 16166  df-p0 16228  df-p1 16229  df-lat 16235  df-clat 16297  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829  df-llines 32975  df-lplanes 32976  df-lvols 32977  df-lines 32978  df-psubsp 32980  df-pmap 32981  df-padd 33273  df-lhyp 33465
This theorem is referenced by:  cdleme17d3  33975
  Copyright terms: Public domain W3C validator