Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16c Structured version   Unicode version

Theorem cdleme16c 33765
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 2nd part of 3rd sentence.  F and  G represent f(s) and f(t) respectively. We show, in their notation, s  \/ t 
\/ f(s)  \/ f(t)=s  \/ t  \/ u. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l  |-  .<_  =  ( le `  K )
cdleme12.j  |-  .\/  =  ( join `  K )
cdleme12.m  |-  ./\  =  ( meet `  K )
cdleme12.a  |-  A  =  ( Atoms `  K )
cdleme12.h  |-  H  =  ( LHyp `  K
)
cdleme12.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme12.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme12.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme16c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( F  .\/  G ) )  =  ( ( S  .\/  T ) 
.\/  U ) )

Proof of Theorem cdleme16c
StepHypRef Expression
1 simp11l 1116 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  K  e.  HL )
2 simp11r 1117 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  W  e.  H )
3 simp12l 1118 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  P  e.  A )
4 simp13l 1120 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  Q  e.  A )
5 simp21 1038 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
6 cdleme12.l . . . . 5  |-  .<_  =  ( le `  K )
7 cdleme12.j . . . . 5  |-  .\/  =  ( join `  K )
8 cdleme12.m . . . . 5  |-  ./\  =  ( meet `  K )
9 cdleme12.a . . . . 5  |-  A  =  ( Atoms `  K )
10 cdleme12.h . . . . 5  |-  H  =  ( LHyp `  K
)
11 cdleme12.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
12 cdleme12.f . . . . 5  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
136, 7, 8, 9, 10, 11, 12cdleme1 33712 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( S  .\/  F )  =  ( S  .\/  U ) )
141, 2, 3, 4, 5, 13syl23anc 1271 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( S  .\/  F )  =  ( S  .\/  U ) )
15 simp22 1039 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
16 cdleme12.g . . . . 5  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
176, 7, 8, 9, 10, 11, 16cdleme1 33712 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( T  e.  A  /\  -.  T  .<_  W ) ) )  ->  ( T  .\/  G )  =  ( T  .\/  U ) )
181, 2, 3, 4, 15, 17syl23anc 1271 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( T  .\/  G )  =  ( T  .\/  U ) )
1914, 18oveq12d 6320 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  F )  .\/  ( T  .\/  G ) )  =  ( ( S  .\/  U ) 
.\/  ( T  .\/  U ) ) )
20 simp21l 1122 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  S  e.  A )
21 simp22l 1124 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  T  e.  A )
22 simp11 1035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simp12 1036 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
24 simp13 1037 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
25 simp23l 1126 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  P  =/=  Q )
26 simp31 1041 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
276, 7, 8, 9, 10, 11, 12cdleme3fa 33721 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
2822, 23, 24, 5, 25, 26, 27syl132anc 1282 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  F  e.  A )
29 simp32 1042 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  T  .<_  ( P  .\/  Q
) )
306, 7, 8, 9, 10, 11, 16cdleme3fa 33721 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  T  .<_  ( P 
.\/  Q ) ) )  ->  G  e.  A )
3122, 23, 24, 15, 25, 29, 30syl132anc 1282 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  G  e.  A )
327, 9hlatj4 32858 . . 3  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A
)  /\  ( F  e.  A  /\  G  e.  A ) )  -> 
( ( S  .\/  T )  .\/  ( F 
.\/  G ) )  =  ( ( S 
.\/  F )  .\/  ( T  .\/  G ) ) )
331, 20, 21, 28, 31, 32syl122anc 1273 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( F  .\/  G ) )  =  ( ( S  .\/  F ) 
.\/  ( T  .\/  G ) ) )
34 simp12r 1119 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  P  .<_  W )
356, 7, 8, 9, 10, 11lhpat2 33529 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
361, 2, 3, 34, 4, 25, 35syl222anc 1280 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  U  e.  A )
377, 9hlatjidm 32853 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A )  ->  ( U  .\/  U
)  =  U )
381, 36, 37syl2anc 665 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( U  .\/  U )  =  U )
3938oveq2d 6318 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( U  .\/  U ) )  =  ( ( S  .\/  T ) 
.\/  U ) )
407, 9hlatj4 32858 . . . 4  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A
)  /\  ( U  e.  A  /\  U  e.  A ) )  -> 
( ( S  .\/  T )  .\/  ( U 
.\/  U ) )  =  ( ( S 
.\/  U )  .\/  ( T  .\/  U ) ) )
411, 20, 21, 36, 36, 40syl122anc 1273 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( U  .\/  U ) )  =  ( ( S  .\/  U ) 
.\/  ( T  .\/  U ) ) )
4239, 41eqtr3d 2465 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  U )  =  ( ( S  .\/  U ) 
.\/  ( T  .\/  U ) ) )
4319, 33, 423eqtr4d 2473 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( F  .\/  G ) )  =  ( ( S  .\/  T ) 
.\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   class class class wbr 4420   ` cfv 5598  (class class class)co 6302   lecple 15185   joincjn 16177   meetcmee 16178   Atomscatm 32748   HLchlt 32835   LHypclh 33468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805  df-preset 16161  df-poset 16179  df-plt 16192  df-lub 16208  df-glb 16209  df-join 16210  df-meet 16211  df-p0 16273  df-p1 16274  df-lat 16280  df-clat 16342  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-lines 32985  df-psubsp 32987  df-pmap 32988  df-padd 33280  df-lhyp 33472
This theorem is referenced by:  cdleme16d  33766
  Copyright terms: Public domain W3C validator