Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16aN Structured version   Unicode version

Theorem cdleme16aN 34222
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s  \/ u  =/= t  \/ u. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme16aN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( S  .\/  U
)  =/=  ( T 
.\/  U ) )

Proof of Theorem cdleme16aN
StepHypRef Expression
1 simp1ll 1051 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  K  e.  HL )
2 simp22 1022 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  S  e.  A )
3 simp23 1023 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  T  e.  A )
4 simp1l 1012 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
5 simp1r 1013 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
6 simp21 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  Q  e.  A )
7 simp31 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  P  =/=  Q )
8 cdleme11.l . . . 4  |-  .<_  =  ( le `  K )
9 cdleme11.j . . . 4  |-  .\/  =  ( join `  K )
10 cdleme11.m . . . 4  |-  ./\  =  ( meet `  K )
11 cdleme11.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdleme11.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdleme11.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
148, 9, 10, 11, 12, 13lhpat2 34008 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
154, 5, 6, 7, 14syl112anc 1223 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  U  e.  A )
16 simp32 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  S  =/=  T )
17 simp33 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  -.  U  .<_  ( S 
.\/  T ) )
18 eqid 2452 . . . 4  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
198, 9, 11, 18lplni2 33500 . . 3  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  ( S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K
) )
201, 2, 3, 15, 16, 17, 19syl132anc 1237 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K
) )
21 eqid 2452 . . 3  |-  ( ( S  .\/  T ) 
.\/  U )  =  ( ( S  .\/  T )  .\/  U )
229, 11, 18, 21lplnllnneN 33519 . 2  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )  -> 
( S  .\/  U
)  =/=  ( T 
.\/  U ) )
231, 2, 3, 15, 20, 22syl131anc 1232 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( P  =/=  Q  /\  S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( S  .\/  U
)  =/=  ( T 
.\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   lecple 14359   joincjn 15228   meetcmee 15229   Atomscatm 33227   HLchlt 33314   LPlanesclpl 33455   LHypclh 33947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-p1 15324  df-lat 15330  df-clat 15392  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461  df-lplanes 33462  df-lhyp 33951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator