Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11c Unicode version

Theorem cdleme11c 30743
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 30752. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme11c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  P  .<_  ( S  .\/  T ) )

Proof of Theorem cdleme11c
StepHypRef Expression
1 simp3l 985 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
2 simp11l 1068 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
3 simp12l 1070 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  e.  A )
4 simp11 987 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp12 988 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 simp13 989 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  Q  e.  A )
7 simp23 992 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  =/=  Q )
8 cdleme11.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
9 cdleme11.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
10 cdleme11.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
11 cdleme11.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
12 cdleme11.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
13 cdleme11.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
148, 9, 10, 11, 12, 13lhpat2 30527 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
154, 5, 6, 7, 14syl112anc 1188 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  U  e.  A )
168, 9, 11hlatlej1 29857 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  P  .<_  ( P  .\/  U ) )
172, 3, 15, 16syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  .<_  ( P  .\/  U
) )
1817adantr 452 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  P  .<_  ( P  .\/  U
) )
196, 7jca 519 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( Q  e.  A  /\  P  =/=  Q ) )
20 simp21 990 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
21 simp22 991 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
22 simp3r 986 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  U  .<_  ( S  .\/  T
) )
2321, 22jca 519 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( T  e.  A  /\  U  .<_  ( S  .\/  T ) ) )
248, 9, 10, 11, 12, 13cdleme11a 30742 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
) )  /\  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( S  .\/  U
)  =  ( S 
.\/  T ) )
254, 5, 19, 20, 23, 24syl122anc 1193 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( S  .\/  U )  =  ( S  .\/  T
) )
2625breq2d 4184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .<_  ( S  .\/  U )  <->  P  .<_  ( S 
.\/  T ) ) )
27 simp21l 1074 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
288, 9, 10, 11, 12, 13cdleme0b 30694 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  U  =/=  P )
294, 5, 6, 28syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  U  =/=  P )
3029necomd 2650 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  =/=  U )
318, 9, 11hlatexch2 29878 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  U  e.  A
)  /\  P  =/=  U )  ->  ( P  .<_  ( S  .\/  U
)  ->  S  .<_  ( P  .\/  U ) ) )
322, 3, 27, 15, 30, 31syl131anc 1197 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .<_  ( S  .\/  U )  ->  S  .<_  ( P  .\/  U ) ) )
3326, 32sylbird 227 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .<_  ( S  .\/  T )  ->  S  .<_  ( P  .\/  U ) ) )
3433imp 419 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  S  .<_  ( P  .\/  U
) )
358, 9, 11hlatlej2 29858 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
362, 3, 6, 35syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  Q  .<_  ( P  .\/  Q
) )
378, 9, 10, 11, 12, 13cdleme0cp 30696 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )
)  ->  ( P  .\/  U )  =  ( P  .\/  Q ) )
384, 5, 6, 37syl12anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .\/  U )  =  ( P  .\/  Q
) )
3936, 38breqtrrd 4198 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  Q  .<_  ( P  .\/  U
) )
4039adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  Q  .<_  ( P  .\/  U
) )
41 hllat 29846 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
422, 41syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
43 eqid 2404 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
4443, 11atbase 29772 . . . . . . . . . 10  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
4527, 44syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  e.  ( Base `  K
) )
4643, 11atbase 29772 . . . . . . . . . 10  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
476, 46syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  Q  e.  ( Base `  K
) )
4843, 9, 11hlatjcl 29849 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
492, 3, 15, 48syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .\/  U )  e.  ( Base `  K
) )
5043, 8, 9latjle12 14446 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( P  .\/  U )  /\  Q  .<_  ( P 
.\/  U ) )  <-> 
( S  .\/  Q
)  .<_  ( P  .\/  U ) ) )
5142, 45, 47, 49, 50syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  (
( S  .<_  ( P 
.\/  U )  /\  Q  .<_  ( P  .\/  U ) )  <->  ( S  .\/  Q )  .<_  ( P 
.\/  U ) ) )
5251adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  (
( S  .<_  ( P 
.\/  U )  /\  Q  .<_  ( P  .\/  U ) )  <->  ( S  .\/  Q )  .<_  ( P 
.\/  U ) ) )
5334, 40, 52mpbi2and 888 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  ( S  .\/  Q )  .<_  ( P  .\/  U ) )
5443, 11atbase 29772 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
553, 54syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  e.  ( Base `  K
) )
5643, 8, 9latnlej1r 14454 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  =/=  Q )
5742, 45, 55, 47, 1, 56syl131anc 1197 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  =/=  Q )
588, 9, 11ps-1 29959 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  Q  e.  A  /\  S  =/=  Q
)  /\  ( P  e.  A  /\  U  e.  A ) )  -> 
( ( S  .\/  Q )  .<_  ( P  .\/  U )  <->  ( S  .\/  Q )  =  ( P  .\/  U ) ) )
592, 27, 6, 57, 3, 15, 58syl132anc 1202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  (
( S  .\/  Q
)  .<_  ( P  .\/  U )  <->  ( S  .\/  Q )  =  ( P 
.\/  U ) ) )
6059adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  (
( S  .\/  Q
)  .<_  ( P  .\/  U )  <->  ( S  .\/  Q )  =  ( P 
.\/  U ) ) )
6153, 60mpbid 202 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  ( S  .\/  Q )  =  ( P  .\/  U
) )
6218, 61breqtrrd 4198 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  /\  P  .<_  ( S  .\/  T
) )  ->  P  .<_  ( S  .\/  Q
) )
6362ex 424 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .<_  ( S  .\/  T )  ->  P  .<_  ( S  .\/  Q ) ) )
648, 9, 11hlatexch2 29878 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  ( P  .<_  ( S  .\/  Q
)  ->  S  .<_  ( P  .\/  Q ) ) )
652, 3, 27, 6, 7, 64syl131anc 1197 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .<_  ( S  .\/  Q )  ->  S  .<_  ( P  .\/  Q ) ) )
6663, 65syld 42 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  .<_  ( S  .\/  T )  ->  S  .<_  ( P  .\/  Q ) ) )
671, 66mtod 170 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  P  .<_  ( S  .\/  T ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Latclat 14429   Atomscatm 29746   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme11dN  30744  cdleme11e  30745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470
  Copyright terms: Public domain W3C validator