Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Structured version   Unicode version

Theorem cdleme0nex 33768
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p  \/ q/0 (i.e. the sublattice from 0 to p  \/ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 33689- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 32821, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l  |-  .<_  =  ( le `  K )
cdleme0nex.j  |-  .\/  =  ( join `  K )
cdleme0nex.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdleme0nex  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( R  =  P  \/  R  =  Q ) )
Distinct variable groups:    A, r    .\/ , r    .<_ , r    P, r    Q, r    R, r    W, r
Allowed substitution hint:    K( r)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 1034 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  R  .<_  W )
2 simp12 1036 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  R  .<_  ( P  .\/  Q ) )
31, 2jca 534 . . 3  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q
) ) )
4 simp3l 1033 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  R  e.  A )
5 simp13 1037 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
6 ralnex 2811 . . . . . . 7  |-  ( A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
75, 6sylibr 215 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
8 breq1 4369 . . . . . . . . . 10  |-  ( r  =  R  ->  (
r  .<_  W  <->  R  .<_  W ) )
98notbid 295 . . . . . . . . 9  |-  ( r  =  R  ->  ( -.  r  .<_  W  <->  -.  R  .<_  W ) )
10 oveq2 6257 . . . . . . . . . 10  |-  ( r  =  R  ->  ( P  .\/  r )  =  ( P  .\/  R
) )
11 oveq2 6257 . . . . . . . . . 10  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
1210, 11eqeq12d 2443 . . . . . . . . 9  |-  ( r  =  R  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
139, 12anbi12d 715 . . . . . . . 8  |-  ( r  =  R  ->  (
( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  ( -.  R  .<_  W  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) ) ) )
1413notbid 295 . . . . . . 7  |-  ( r  =  R  ->  ( -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R
) ) ) )
1514rspcva 3123 . . . . . 6  |-  ( ( R  e.  A  /\  A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q 
.\/  R ) ) )
164, 7, 15syl2anc 665 . . . . 5  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
17 simp11 1035 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  K  e.  HL )
18 hlcvl 32837 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CvLat )
1917, 18syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  K  e.  CvLat
)
20 simp21 1038 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  A )
21 simp22 1039 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  Q  e.  A )
22 simp23 1040 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  =/=  Q )
23 cdleme0nex.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
24 cdleme0nex.l . . . . . . . 8  |-  .<_  =  ( le `  K )
25 cdleme0nex.j . . . . . . . 8  |-  .\/  =  ( join `  K )
2623, 24, 25cvlsupr2 32821 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2719, 20, 21, 4, 22, 26syl131anc 1277 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2827anbi2d 708 . . . . 5  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  <->  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) ) ) )
2916, 28mtbid 301 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
30 ianor 490 . . . . 5  |-  ( -.  ( ( R  =/= 
P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( -.  ( R  =/=  P  /\  R  =/=  Q
)  \/  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
31 df-3an 984 . . . . . . . 8  |-  ( ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q
) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q
) ) )
3231anbi2i 698 . . . . . . 7  |-  ( ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  ( -.  R  .<_  W  /\  ( ( R  =/=  P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q ) ) ) )
33 an12 804 . . . . . . 7  |-  ( ( -.  R  .<_  W  /\  ( ( R  =/= 
P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3432, 33bitri 252 . . . . . 6  |-  ( ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3534notbii 297 . . . . 5  |-  ( -.  ( -.  R  .<_  W  /\  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  -.  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
36 pm4.62 420 . . . . 5  |-  ( ( ( R  =/=  P  /\  R  =/=  Q
)  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( -.  ( R  =/=  P  /\  R  =/=  Q
)  \/  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3730, 35, 363bitr4ri 281 . . . 4  |-  ( ( ( R  =/=  P  /\  R  =/=  Q
)  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  -.  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
3829, 37sylibr 215 . . 3  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( R  =/=  P  /\  R  =/=  Q )  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P 
.\/  Q ) ) ) )
393, 38mt2d 120 . 2  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( R  =/=  P  /\  R  =/=  Q ) )
40 neanior 2693 . . 3  |-  ( ( R  =/=  P  /\  R  =/=  Q )  <->  -.  ( R  =  P  \/  R  =  Q )
)
4140con2bii 333 . 2  |-  ( ( R  =  P  \/  R  =  Q )  <->  -.  ( R  =/=  P  /\  R  =/=  Q
) )
4239, 41sylibr 215 1  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( R  =  P  \/  R  =  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   lecple 15140   joincjn 16132   Atomscatm 32741   CvLatclc 32743   HLchlt 32828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-preset 16116  df-poset 16134  df-plt 16147  df-lub 16163  df-glb 16164  df-join 16165  df-meet 16166  df-p0 16228  df-lat 16235  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829
This theorem is referenced by:  cdleme18c  33771  cdleme18d  33773  cdlemg17b  34141  cdlemg17h  34147
  Copyright terms: Public domain W3C validator