Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0moN Structured version   Visualization version   Unicode version

Theorem cdleme0moN 33836
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0moN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
Distinct variable groups:    A, r    .\/ , r    P, r    Q, r    R, r    U, r
Allowed substitution hints:    H( r)    K( r)   
.<_ ( r)    ./\ ( r)    W( r)

Proof of Theorem cdleme0moN
StepHypRef Expression
1 simp23r 1136 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  R  .<_  W )
2 neanior 2728 . . 3  |-  ( ( R  =/=  P  /\  R  =/=  Q )  <->  -.  ( R  =  P  \/  R  =  Q )
)
3 simpl33 1097 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )
4 simp23l 1135 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  R  e.  A
)
54adantr 471 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  e.  A )
6 simprl 769 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =/=  P )
7 simprr 771 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =/=  Q )
8 simpl32 1096 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  .<_  ( P  .\/  Q ) )
9 simpl1l 1065 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  K  e.  HL )
10 hlcvl 32970 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  K  e.  CvLat )
12 simp21l 1131 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
1312adantr 471 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  P  e.  A )
14 simp22l 1133 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
1514adantr 471 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  Q  e.  A )
16 simpl31 1095 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  P  =/=  Q )
17 cdleme0.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
18 cdleme0.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
19 cdleme0.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
2017, 18, 19cvlsupr2 32954 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2111, 13, 15, 5, 16, 20syl131anc 1289 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( ( P  .\/  R )  =  ( Q 
.\/  R )  <->  ( R  =/=  P  /\  R  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) ) )
226, 7, 8, 21mpbir3and 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  .\/  R
)  =  ( Q 
.\/  R ) )
23 simp1l 1038 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
24 simp1r 1039 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  W  e.  H
)
25 simp21r 1132 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  P  .<_  W )
26 simp31 1050 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
27 cdleme0.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
28 cdleme0.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
29 cdleme0.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
3018, 19, 27, 17, 28, 29lhpat2 33655 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
3123, 24, 12, 25, 14, 26, 30syl222anc 1292 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  U  e.  A
)
3231adantr 471 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  U  e.  A )
33 simpl1 1017 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
34 simpl21 1092 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
35 simpl22 1093 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
3618, 19, 27, 17, 28, 29cdleme02N 33833 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  (
( P  .\/  U
)  =  ( Q 
.\/  U )  /\  U  .<_  W ) )
3736simpld 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  ( P  .\/  U )  =  ( Q  .\/  U
) )
3833, 34, 35, 16, 37syl121anc 1281 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  .\/  U
)  =  ( Q 
.\/  U ) )
39 df-rmo 2757 . . . . . . 7  |-  ( E* r  e.  A  ( P  .\/  r )  =  ( Q  .\/  r )  <->  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) )
40 oveq2 6323 . . . . . . . . 9  |-  ( r  =  R  ->  ( P  .\/  r )  =  ( P  .\/  R
) )
41 oveq2 6323 . . . . . . . . 9  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
4240, 41eqeq12d 2477 . . . . . . . 8  |-  ( r  =  R  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
43 oveq2 6323 . . . . . . . . 9  |-  ( r  =  U  ->  ( P  .\/  r )  =  ( P  .\/  U
) )
44 oveq2 6323 . . . . . . . . 9  |-  ( r  =  U  ->  ( Q  .\/  r )  =  ( Q  .\/  U
) )
4543, 44eqeq12d 2477 . . . . . . . 8  |-  ( r  =  U  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  U )  =  ( Q  .\/  U ) ) )
4642, 45rmoi 3372 . . . . . . 7  |-  ( ( E* r  e.  A  ( P  .\/  r )  =  ( Q  .\/  r )  /\  ( R  e.  A  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( U  e.  A  /\  ( P  .\/  U )  =  ( Q  .\/  U ) ) )  ->  R  =  U )
4739, 46syl3an1br 1315 . . . . . 6  |-  ( ( E* r ( r  e.  A  /\  ( P  .\/  r )  =  ( Q  .\/  r
) )  /\  ( R  e.  A  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( U  e.  A  /\  ( P  .\/  U )  =  ( Q  .\/  U ) ) )  ->  R  =  U )
483, 5, 22, 32, 38, 47syl122anc 1285 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =  U )
4936simprd 469 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  U  .<_  W )
5033, 34, 35, 16, 49syl121anc 1281 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  U  .<_  W )
5148, 50eqbrtrd 4437 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  .<_  W )
5251ex 440 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( R  =/=  P  /\  R  =/=  Q )  ->  R  .<_  W ) )
532, 52syl5bir 226 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( -.  ( R  =  P  \/  R  =  Q )  ->  R  .<_  W )
)
541, 53mt3d 130 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   E*wmo 2311    =/= wne 2633   E*wrmo 2752   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   lecple 15246   joincjn 16238   meetcmee 16239   Atomscatm 32874   CvLatclc 32876   HLchlt 32961   LHypclh 33594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-p1 16335  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962  df-lhyp 33598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator