Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0cq Structured version   Unicode version

Theorem cdleme0cq 35011
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0cq  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )

Proof of Theorem cdleme0cq
StepHypRef Expression
1 cdleme0.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
21oveq2i 6293 . 2  |-  ( Q 
.\/  U )  =  ( Q  .\/  (
( P  .\/  Q
)  ./\  W )
)
3 simpll 753 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  HL )
4 simprrl 763 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  A )
5 hllat 34160 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
65ad2antrr 725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  Lat )
7 eqid 2467 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
97, 8atbase 34086 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
109ad2antrl 727 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  ( Base `  K )
)
117, 8atbase 34086 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
124, 11syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  ( Base `  K )
)
13 cdleme0.j . . . . . 6  |-  .\/  =  ( join `  K )
147, 13latjcl 15531 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
156, 10, 12, 14syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
16 cdleme0.h . . . . . 6  |-  H  =  ( LHyp `  K
)
177, 16lhpbase 34794 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1817ad2antlr 726 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  ( Base `  K )
)
19 cdleme0.l . . . . . 6  |-  .<_  =  ( le `  K )
207, 19, 13latlej2 15541 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  Q  .<_  ( P  .\/  Q
) )
216, 10, 12, 20syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  Q ) )
22 cdleme0.m . . . . 5  |-  ./\  =  ( meet `  K )
237, 19, 13, 22, 8atmod3i1 34660 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  Q  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( Q  .\/  W ) ) )
243, 4, 15, 18, 21, 23syl131anc 1241 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  Q )  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  ( Q  .\/  W ) ) )
25 eqid 2467 . . . . . 6  |-  ( 1.
`  K )  =  ( 1. `  K
)
2619, 13, 25, 8, 16lhpjat2 34817 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  .\/  W
)  =  ( 1.
`  K ) )
2726adantrl 715 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  W )  =  ( 1. `  K ) )
2827oveq2d 6298 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( P  .\/  Q )  ./\  ( Q  .\/  W ) )  =  ( ( P  .\/  Q ) 
./\  ( 1. `  K ) ) )
29 hlol 34158 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
3029ad2antrr 725 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  OL )
317, 22, 25olm11 34024 . . . 4  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
3230, 15, 31syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( P  .\/  Q )  ./\  ( 1. `  K ) )  =  ( P 
.\/  Q ) )
3324, 28, 323eqtrd 2512 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  Q )  ./\  W )
)  =  ( P 
.\/  Q ) )
342, 33syl5eq 2520 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14483   lecple 14555   joincjn 15424   meetcmee 15425   1.cp1 15518   Latclat 15525   OLcol 33971   Atomscatm 34060   HLchlt 34147   LHypclh 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-poset 15426  df-plt 15438  df-lub 15454  df-glb 15455  df-join 15456  df-meet 15457  df-p0 15519  df-p1 15520  df-lat 15526  df-clat 15588  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784
This theorem is referenced by:  cdleme11g  35061  cdlemg4b2  35406  cdlemg13a  35447
  Copyright terms: Public domain W3C validator