Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd9 Structured version   Unicode version

Theorem cdlemd9 36344
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  R
)  =  ( G `
 R ) )

Proof of Theorem cdlemd9
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl1 997 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
2 simpl2 998 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl3 999 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  ( G `
 P ) )
4 simpr 459 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  P )
5 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
9 cdlemd4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
105, 6, 7, 8, 9cdlemd8 36343 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  P )  =  P ) )  ->  ( F `  R )  =  ( G `  R ) )
111, 2, 3, 4, 10syl112anc 1230 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  R
)  =  ( G `
 R ) )
12 simpl11 1069 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
13 simpl2 998 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
14 simp12l 1107 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  e.  T )
1514adantr 463 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  F  e.  T )
165, 7, 8, 9ltrnel 36276 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1712, 15, 13, 16syl3anc 1226 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
18 simpr 459 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  P
)  =/=  P )
1918necomd 2653 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  P  =/=  ( F `  P ) )
205, 6, 7, 8cdlemb2 36178 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  /\  P  =/=  ( F `  P
) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `  P ) ) ) )
2112, 13, 17, 19, 20syl121anc 1231 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `
 P ) ) ) )
22 simp1l1 1087 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
23 simp1l2 1088 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
24 simp2 995 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  s  e.  A )
25 simp3l 1022 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  -.  s  .<_  W )
2624, 25jca 530 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( s  e.  A  /\  -.  s  .<_  W ) )
27 simp1l3 1089 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
28 simp3r 1023 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  -.  s  .<_  ( P  .\/  ( F `  P )
) )
295, 6, 7, 8, 9cdlemd7 36342 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  s  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3022, 23, 26, 27, 28, 29syl122anc 1235 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3130rexlimdv3a 2876 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  R )  =  ( G `  R ) ) )
3221, 31mpd 15 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  R
)  =  ( G `
 R ) )
3311, 32pm2.61dane 2700 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  R
)  =  ( G `
 R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   E.wrex 2733   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   lecple 14709   joincjn 15690   Atomscatm 35401   HLchlt 35488   LHypclh 36121   LTrncltrn 36238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-map 7340  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-p1 15787  df-lat 15793  df-clat 15855  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35635  df-psubsp 35640  df-pmap 35641  df-padd 35933  df-lhyp 36125  df-laut 36126  df-ldil 36241  df-ltrn 36242  df-trl 36297
This theorem is referenced by:  cdlemd  36345
  Copyright terms: Public domain W3C validator