Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd7 Structured version   Unicode version

Theorem cdlemd7 35018
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )

Proof of Theorem cdlemd7
StepHypRef Expression
1 simp1 996 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A ) )
2 simp2l 1022 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp2r 1023 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp11l 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  K  e.  HL )
5 hllat 34178 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  K  e.  Lat )
7 simp2rl 1065 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  Q  e.  A )
8 eqid 2467 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
9 cdlemd4.a . . . . 5  |-  A  =  ( Atoms `  K )
108, 9atbase 34104 . . . 4  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
117, 10syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  Q  e.  ( Base `  K
) )
12 simp2ll 1063 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  P  e.  A )
138, 9atbase 34104 . . . 4  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1412, 13syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  P  e.  ( Base `  K
) )
15 simp11 1026 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simp12l 1109 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  F  e.  T )
17 cdlemd4.h . . . . 5  |-  H  =  ( LHyp `  K
)
18 cdlemd4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
198, 17, 18ltrncl 34939 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
2015, 16, 14, 19syl3anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  P )  e.  ( Base `  K
) )
21 simp3r 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )
22 cdlemd4.l . . . . 5  |-  .<_  =  ( le `  K )
23 cdlemd4.j . . . . 5  |-  .\/  =  ( join `  K )
248, 22, 23latnlej1l 15556 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  ->  Q  =/=  P )
2524necomd 2738 . . 3  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  ->  P  =/=  Q )
266, 11, 14, 20, 21, 25syl131anc 1241 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  P  =/=  Q )
27 simp3l 1024 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
28 simp12 1027 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F  e.  T  /\  G  e.  T )
)
2922, 23, 9, 17, 18cdlemd6 35017 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( G `
 Q ) )
3015, 28, 2, 3, 21, 27, 29syl231anc 1248 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  Q )  =  ( G `  Q ) )
3122, 23, 9, 17, 18cdlemd5 35016 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
321, 2, 3, 26, 27, 30, 31syl132anc 1246 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   joincjn 15431   Latclat 15532   Atomscatm 34078   HLchlt 34165   LHypclh 34798   LTrncltrn 34915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-llines 34312  df-psubsp 34317  df-pmap 34318  df-padd 34610  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973
This theorem is referenced by:  cdlemd9  35020
  Copyright terms: Public domain W3C validator