Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd5 Structured version   Unicode version

Theorem cdlemd5 33942
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )

Proof of Theorem cdlemd5
StepHypRef Expression
1 fveq2 5712 . . . 4  |-  ( R  =  P  ->  ( F `  R )  =  ( F `  P ) )
2 fveq2 5712 . . . 4  |-  ( R  =  P  ->  ( G `  R )  =  ( G `  P ) )
31, 2eqeq12d 2457 . . 3  |-  ( R  =  P  ->  (
( F `  R
)  =  ( G `
 R )  <->  ( F `  P )  =  ( G `  P ) ) )
4 simpll1 1027 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
5 simpl21 1066 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
65adantr 465 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
7 simpl22 1067 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
87adantr 465 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
9 simp23 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  =/=  Q
)
109ad2antrr 725 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  P  =/=  Q )
11 simplr 754 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  R  .<_  ( P  .\/  Q ) )
12 simpr 461 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  R  =/=  P )
1310, 11, 123jca 1168 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )
14 simpll3 1029 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )
15 cdlemd4.l . . . . 5  |-  .<_  =  ( le `  K )
16 cdlemd4.j . . . . 5  |-  .\/  =  ( join `  K )
17 cdlemd4.a . . . . 5  |-  A  =  ( Atoms `  K )
18 cdlemd4.h . . . . 5  |-  H  =  ( LHyp `  K
)
19 cdlemd4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
2015, 16, 17, 18, 19cdlemd4 33941 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
214, 6, 8, 13, 14, 20syl131anc 1231 . . 3  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  /\  R  =/=  P
)  ->  ( F `  R )  =  ( G `  R ) )
22 simpl3l 1043 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( F `  P )  =  ( G `  P ) )
233, 21, 22pm2.61ne 2710 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( F `  R )  =  ( G `  R ) )
24 simpl1 991 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
25 simpl21 1066 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
26 simpl22 1067 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
27 simpl23 1068 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  P  =/=  Q )
28 simpr 461 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  -.  R  .<_  ( P  .\/  Q
) )
2927, 28jca 532 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )
30 simpl3 993 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )
3115, 16, 17, 18, 19cdlemd2 33939 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3224, 25, 26, 29, 30, 31syl131anc 1231 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  =  ( G `  R ) )
3323, 32pm2.61dan 789 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   lecple 14266   joincjn 15135   Atomscatm 33004   HLchlt 33091   LHypclh 33724   LTrncltrn 33841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-map 7237  df-poset 15137  df-plt 15149  df-lub 15165  df-glb 15166  df-join 15167  df-meet 15168  df-p0 15230  df-p1 15231  df-lat 15237  df-clat 15299  df-oposet 32917  df-ol 32919  df-oml 32920  df-covers 33007  df-ats 33008  df-atl 33039  df-cvlat 33063  df-hlat 33092  df-psubsp 33243  df-pmap 33244  df-padd 33536  df-lhyp 33728  df-laut 33729  df-ldil 33844  df-ltrn 33845
This theorem is referenced by:  cdlemd7  33944
  Copyright terms: Public domain W3C validator