Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd4 Structured version   Unicode version

Theorem cdlemd4 33685
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )

Proof of Theorem cdlemd4
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp11l 1116 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  HL )
2 simp11r 1117 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  W  e.  H
)
3 simp21 1038 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp22 1039 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5 simp231 1149 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  =/=  Q
)
6 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
106, 7, 8, 9cdlemb2 33524 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
111, 2, 3, 4, 5, 10syl221anc 1275 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
12 simpl11 1080 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpl12 1081 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F  e.  T  /\  G  e.  T )
)
14 simpl13 1082 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  R  e.  A )
15 simpl21 1083 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simprl 762 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
17 simprrl 772 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
1816, 17jca 534 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
19 hllat 32847 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
201, 19syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  Lat )
2120adantr 466 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  K  e.  Lat )
22 eqid 2422 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2322, 8atbase 32773 . . . . . 6  |-  ( s  e.  A  ->  s  e.  ( Base `  K
) )
2423ad2antrl 732 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  ( Base `  K
) )
25 simp21l 1122 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  A
)
2622, 8atbase 32773 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2725, 26syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  (
Base `  K )
)
2827adantr 466 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  e.  ( Base `  K
) )
29 simp22l 1124 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  A
)
3022, 8atbase 32773 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3129, 30syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  (
Base `  K )
)
3231adantr 466 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  Q  e.  ( Base `  K
) )
33 simprrr 773 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  ( P  .\/  Q ) )
3422, 6, 7latnlej1l 16302 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  s  =/=  P
)
3534necomd 2695 . . . . 5  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  P  =/=  s
)
3621, 24, 28, 32, 33, 35syl131anc 1277 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  s )
37 simpl22 1084 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
38 simpl23 1085 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )
396, 7, 8, 9cdlemd3 33684 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  s  e.  A  /\  -.  s  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  s
) )
4012, 15, 37, 38, 14, 16, 33, 39syl133anc 1287 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  R  .<_  ( P  .\/  s ) )
4136, 40jca 534 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )
42 simpl3l 1060 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
435adantr 466 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
4443, 33jca 534 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )
45 simpl3 1010 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )
46 cdlemd4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
476, 7, 8, 9, 46cdlemd2 33683 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  s  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  s )  =  ( G `  s ) )
4812, 13, 16, 15, 37, 44, 45, 47syl331anc 1289 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  s )  =  ( G `  s ) )
496, 7, 8, 9, 46cdlemd2 33683 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )  /\  ( ( F `
 P )  =  ( G `  P
)  /\  ( F `  s )  =  ( G `  s ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5012, 13, 14, 15, 18, 41, 42, 48, 49syl332anc 1295 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5111, 50rexlimddv 2921 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   E.wrex 2776   class class class wbr 4420   ` cfv 5597  (class class class)co 6301   Basecbs 15108   lecple 15184   joincjn 16176   Latclat 16278   Atomscatm 32747   HLchlt 32834   LHypclh 33467   LTrncltrn 33584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-map 7478  df-preset 16160  df-poset 16178  df-plt 16191  df-lub 16207  df-glb 16208  df-join 16209  df-meet 16210  df-p0 16272  df-p1 16273  df-lat 16279  df-clat 16341  df-oposet 32660  df-ol 32662  df-oml 32663  df-covers 32750  df-ats 32751  df-atl 32782  df-cvlat 32806  df-hlat 32835  df-psubsp 32986  df-pmap 32987  df-padd 33279  df-lhyp 33471  df-laut 33472  df-ldil 33587  df-ltrn 33588
This theorem is referenced by:  cdlemd5  33686
  Copyright terms: Public domain W3C validator