Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd4 Structured version   Unicode version

Theorem cdlemd4 33842
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )

Proof of Theorem cdlemd4
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp11l 1099 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  HL )
2 simp11r 1100 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  W  e.  H
)
3 simp21 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp22 1022 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5 simp231 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  =/=  Q
)
6 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
106, 7, 8, 9cdlemb2 33682 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
111, 2, 3, 4, 5, 10syl221anc 1229 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
12 simpl11 1063 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpl12 1064 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F  e.  T  /\  G  e.  T )
)
14 simpl13 1065 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  R  e.  A )
15 simpl21 1066 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simprl 755 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
17 simprrl 763 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
1816, 17jca 532 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
19 hllat 33005 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
201, 19syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  Lat )
2120adantr 465 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  K  e.  Lat )
22 eqid 2441 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2322, 8atbase 32931 . . . . . 6  |-  ( s  e.  A  ->  s  e.  ( Base `  K
) )
2423ad2antrl 727 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  ( Base `  K
) )
25 simp21l 1105 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  A
)
2622, 8atbase 32931 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2725, 26syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  (
Base `  K )
)
2827adantr 465 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  e.  ( Base `  K
) )
29 simp22l 1107 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  A
)
3022, 8atbase 32931 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3129, 30syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  (
Base `  K )
)
3231adantr 465 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  Q  e.  ( Base `  K
) )
33 simprrr 764 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  ( P  .\/  Q ) )
3422, 6, 7latnlej1l 15237 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  s  =/=  P
)
3534necomd 2693 . . . . 5  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  P  =/=  s
)
3621, 24, 28, 32, 33, 35syl131anc 1231 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  s )
37 simpl22 1067 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
38 simpl23 1068 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )
396, 7, 8, 9cdlemd3 33841 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  s  e.  A  /\  -.  s  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  s
) )
4012, 15, 37, 38, 14, 16, 33, 39syl133anc 1241 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  R  .<_  ( P  .\/  s ) )
4136, 40jca 532 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )
42 simpl3l 1043 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
435adantr 465 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
4443, 33jca 532 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )
45 simpl3 993 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )
46 cdlemd4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
476, 7, 8, 9, 46cdlemd2 33840 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  s  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  s )  =  ( G `  s ) )
4812, 13, 16, 15, 37, 44, 45, 47syl331anc 1243 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  s )  =  ( G `  s ) )
496, 7, 8, 9, 46cdlemd2 33840 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )  /\  ( ( F `
 P )  =  ( G `  P
)  /\  ( F `  s )  =  ( G `  s ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5012, 13, 14, 15, 18, 41, 42, 48, 49syl332anc 1249 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5111, 50rexlimddv 2843 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   E.wrex 2714   class class class wbr 4290   ` cfv 5416  (class class class)co 6089   Basecbs 14172   lecple 14243   joincjn 15112   Latclat 15213   Atomscatm 32905   HLchlt 32992   LHypclh 33625   LTrncltrn 33742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-map 7214  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-p1 15208  df-lat 15214  df-clat 15276  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-psubsp 33144  df-pmap 33145  df-padd 33437  df-lhyp 33629  df-laut 33630  df-ldil 33745  df-ltrn 33746
This theorem is referenced by:  cdlemd5  33843
  Copyright terms: Public domain W3C validator