Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlema2N Unicode version

Theorem cdlema2N 28670
Description: A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlema2.b  |-  B  =  ( Base `  K
)
cdlema2.l  |-  .<_  =  ( le `  K )
cdlema2.j  |-  .\/  =  ( join `  K )
cdlema2.m  |-  ./\  =  ( meet `  K )
cdlema2.z  |-  .0.  =  ( 0. `  K )
cdlema2.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlema2N  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( R  ./\  X
)  =  .0.  )

Proof of Theorem cdlema2N
StepHypRef Expression
1 simp3ll 1031 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  R  =/=  P )
2 simp3rl 1033 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  P  .<_  X )
3 simp3rr 1034 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  -.  Q  .<_  X )
4 simp3lr 1032 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  R  .<_  ( P  .\/  Q ) )
52, 3, 43jca 1137 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )
6 cdlema2.b . . . . . 6  |-  B  =  ( Base `  K
)
7 cdlema2.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdlema2.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdlema2.a . . . . . 6  |-  A  =  ( Atoms `  K )
106, 7, 8, 9exatleN 28282 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  <->  R  =  P ) )
115, 10syld3an3 1232 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( R  .<_  X  <->  R  =  P ) )
1211necon3bbid 2446 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( -.  R  .<_  X  <-> 
R  =/=  P ) )
131, 12mpbird 225 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  -.  R  .<_  X )
14 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  K  e.  HL )
15 hlatl 28239 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
1614, 15syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  K  e.  AtLat )
17 simp23 995 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  R  e.  A )
18 simp1r 985 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  X  e.  B )
19 cdlema2.m . . . 4  |-  ./\  =  ( meet `  K )
20 cdlema2.z . . . 4  |-  .0.  =  ( 0. `  K )
216, 7, 19, 20, 9atnle 28196 . . 3  |-  ( ( K  e.  AtLat  /\  R  e.  A  /\  X  e.  B )  ->  ( -.  R  .<_  X  <->  ( R  ./\ 
X )  =  .0.  ) )
2216, 17, 18, 21syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( -.  R  .<_  X  <-> 
( R  ./\  X
)  =  .0.  )
)
2313, 22mpbid 203 1  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( R  ./\  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   0.cp0 13987   Atomscatm 28142   AtLatcal 28143   HLchlt 28229
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-lat 13996  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230
  Copyright terms: Public domain W3C validator