Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlema1N Structured version   Unicode version

Theorem cdlema1N 33741
Description: A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlema1.b  |-  B  =  ( Base `  K
)
cdlema1.l  |-  .<_  =  ( le `  K )
cdlema1.j  |-  .\/  =  ( join `  K )
cdlema1.m  |-  ./\  =  ( meet `  K )
cdlema1.a  |-  A  =  ( Atoms `  K )
cdlema1.n  |-  N  =  ( Lines `  K )
cdlema1.f  |-  F  =  ( pmap `  K
)
Assertion
Ref Expression
cdlema1N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  .\/  R )  =  ( X  .\/  Y ) )

Proof of Theorem cdlema1N
StepHypRef Expression
1 cdlema1.b . 2  |-  B  =  ( Base `  K
)
2 cdlema1.l . 2  |-  .<_  =  ( le `  K )
3 simp11 1018 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  K  e.  HL )
4 hllat 33314 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  K  e.  Lat )
6 simp12 1019 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  X  e.  B )
7 simp23 1023 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  R  e.  A )
8 cdlema1.a . . . . 5  |-  A  =  ( Atoms `  K )
91, 8atbase 33240 . . . 4  |-  ( R  e.  A  ->  R  e.  B )
107, 9syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  R  e.  B )
11 cdlema1.j . . . 4  |-  .\/  =  ( join `  K )
121, 11latjcl 15323 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  R  e.  B )  ->  ( X  .\/  R
)  e.  B )
135, 6, 10, 12syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  .\/  R )  e.  B
)
14 simp13 1020 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Y  e.  B )
151, 11latjcl 15323 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
165, 6, 14, 15syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  .\/  Y )  e.  B
)
171, 2, 11latlej1 15332 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X  .<_  ( X  .\/  Y ) )
185, 6, 14, 17syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  X  .<_  ( X  .\/  Y ) )
19 simp21 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  P  e.  A )
201, 8atbase 33240 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
2119, 20syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  P  e.  B )
22 simp22 1022 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Q  e.  A )
231, 8atbase 33240 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
2422, 23syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Q  e.  B )
251, 11latjcl 15323 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
265, 21, 24, 25syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( P  .\/  Q )  e.  B
)
27 simp31r 1112 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  R  .<_  ( P  .\/  Q ) )
28 simp32l 1113 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  P  .<_  X )
29 simp32r 1114 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Q  .<_  Y )
301, 2, 11latjlej12 15339 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  X  e.  B
)  /\  ( Q  e.  B  /\  Y  e.  B ) )  -> 
( ( P  .<_  X  /\  Q  .<_  Y )  ->  ( P  .\/  Q )  .<_  ( X  .\/  Y ) ) )
315, 21, 6, 24, 14, 30syl122anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( ( P  .<_  X  /\  Q  .<_  Y )  ->  ( P  .\/  Q )  .<_  ( X  .\/  Y ) ) )
3228, 29, 31mp2and 679 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( P  .\/  Q )  .<_  ( X 
.\/  Y ) )
331, 2, 5, 10, 26, 16, 27, 32lattrd 15330 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  R  .<_  ( X  .\/  Y ) )
341, 2, 11latjle12 15334 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  R  e.  B  /\  ( X  .\/  Y
)  e.  B ) )  ->  ( ( X  .<_  ( X  .\/  Y )  /\  R  .<_  ( X  .\/  Y ) )  <->  ( X  .\/  R )  .<_  ( X  .\/  Y ) ) )
355, 6, 10, 16, 34syl13anc 1221 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( ( X  .<_  ( X  .\/  Y )  /\  R  .<_  ( X  .\/  Y ) )  <->  ( X  .\/  R )  .<_  ( X  .\/  Y ) ) )
3618, 33, 35mpbi2and 912 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  .\/  R )  .<_  ( X 
.\/  Y ) )
371, 2, 11latlej1 15332 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  R  e.  B )  ->  X  .<_  ( X  .\/  R ) )
385, 6, 10, 37syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  X  .<_  ( X  .\/  R ) )
39 simp331 1141 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( F `  Y )  e.  N
)
40 simp332 1142 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  ./\ 
Y )  e.  A
)
41 simp333 1143 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  -.  Q  .<_  X )
42 cdlema1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
431, 2, 42latmle1 15348 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  X )
445, 6, 14, 43syl3anc 1219 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  ./\ 
Y )  .<_  X )
45 breq1 4393 . . . . . . . 8  |-  ( Q  =  ( X  ./\  Y )  ->  ( Q  .<_  X  <->  ( X  ./\  Y )  .<_  X )
)
4644, 45syl5ibrcom 222 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( Q  =  ( X  ./\  Y )  ->  Q  .<_  X ) )
4746necon3bd 2660 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( -.  Q  .<_  X  ->  Q  =/=  ( X  ./\  Y
) ) )
4841, 47mpd 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Q  =/=  ( X  ./\  Y ) )
491, 2, 42latmle2 15349 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  Y )
505, 6, 14, 49syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  ./\ 
Y )  .<_  Y )
51 cdlema1.n . . . . . 6  |-  N  =  ( Lines `  K )
52 cdlema1.f . . . . . 6  |-  F  =  ( pmap `  K
)
531, 2, 11, 8, 51, 52lneq2at 33728 . . . . 5  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  ( F `  Y )  e.  N )  /\  ( Q  e.  A  /\  ( X  ./\  Y
)  e.  A  /\  Q  =/=  ( X  ./\  Y ) )  /\  ( Q  .<_  Y  /\  ( X  ./\  Y )  .<_  Y ) )  ->  Y  =  ( Q  .\/  ( X  ./\  Y
) ) )
543, 14, 39, 22, 40, 48, 29, 50, 53syl332anc 1250 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Y  =  ( Q  .\/  ( X 
./\  Y ) ) )
551, 11latjcl 15323 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  R  e.  B )  ->  ( P  .\/  R
)  e.  B )
565, 21, 10, 55syl3anc 1219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( P  .\/  R )  e.  B
)
577, 22, 193jca 1168 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A ) )
58 simp31l 1111 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  R  =/=  P )
593, 57, 583jca 1168 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( K  e.  HL  /\  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  R  =/=  P ) )
602, 11, 8hlatexch1 33345 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  Q  e.  A  /\  P  e.  A
)  /\  R  =/=  P )  ->  ( R  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  R ) ) )
6159, 27, 60sylc 60 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Q  .<_  ( P  .\/  R ) )
6221, 6, 103jca 1168 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( P  e.  B  /\  X  e.  B  /\  R  e.  B ) )
635, 62jca 532 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( K  e.  Lat  /\  ( P  e.  B  /\  X  e.  B  /\  R  e.  B ) ) )
641, 2, 11latjlej1 15337 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  X  e.  B  /\  R  e.  B
) )  ->  ( P  .<_  X  ->  ( P  .\/  R )  .<_  ( X  .\/  R ) ) )
6563, 28, 64sylc 60 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( P  .\/  R )  .<_  ( X 
.\/  R ) )
661, 2, 5, 24, 56, 13, 61, 65lattrd 15330 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Q  .<_  ( X  .\/  R ) )
671, 2, 11, 42latmlej11 15362 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  R  e.  B
) )  ->  ( X  ./\  Y )  .<_  ( X  .\/  R ) )
685, 6, 14, 10, 67syl13anc 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  ./\ 
Y )  .<_  ( X 
.\/  R ) )
691, 42latmcl 15324 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
705, 6, 14, 69syl3anc 1219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  ./\ 
Y )  e.  B
)
711, 2, 11latjle12 15334 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  ( X  ./\  Y
)  e.  B  /\  ( X  .\/  R )  e.  B ) )  ->  ( ( Q 
.<_  ( X  .\/  R
)  /\  ( X  ./\ 
Y )  .<_  ( X 
.\/  R ) )  <-> 
( Q  .\/  ( X  ./\  Y ) ) 
.<_  ( X  .\/  R
) ) )
725, 24, 70, 13, 71syl13anc 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( ( Q  .<_  ( X  .\/  R )  /\  ( X 
./\  Y )  .<_  ( X  .\/  R ) )  <->  ( Q  .\/  ( X  ./\  Y ) )  .<_  ( X  .\/  R ) ) )
7366, 68, 72mpbi2and 912 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( Q  .\/  ( X  ./\  Y
) )  .<_  ( X 
.\/  R ) )
7454, 73eqbrtrd 4410 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  Y  .<_  ( X  .\/  R ) )
751, 2, 11latjle12 15334 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .\/  R
)  e.  B ) )  ->  ( ( X  .<_  ( X  .\/  R )  /\  Y  .<_  ( X  .\/  R ) )  <->  ( X  .\/  Y )  .<_  ( X  .\/  R ) ) )
765, 6, 14, 13, 75syl13anc 1221 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( ( X  .<_  ( X  .\/  R )  /\  Y  .<_  ( X  .\/  R ) )  <->  ( X  .\/  Y )  .<_  ( X  .\/  R ) ) )
7738, 74, 76mpbi2and 912 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  .\/  Y )  .<_  ( X 
.\/  R ) )
781, 2, 5, 13, 16, 36, 77latasymd 15329 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q
) )  /\  ( P  .<_  X  /\  Q  .<_  Y )  /\  (
( F `  Y
)  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) )  ->  ( X  .\/  R )  =  ( X  .\/  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4390   ` cfv 5516  (class class class)co 6190   Basecbs 14276   lecple 14347   joincjn 15216   meetcmee 15217   Latclat 15317   Atomscatm 33214   HLchlt 33301   Linesclines 33444   pmapcpmap 33447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-poset 15218  df-plt 15230  df-lub 15246  df-glb 15247  df-join 15248  df-meet 15249  df-p0 15311  df-lat 15318  df-clat 15380  df-oposet 33127  df-ol 33129  df-oml 33130  df-covers 33217  df-ats 33218  df-atl 33249  df-cvlat 33273  df-hlat 33302  df-lines 33451  df-pmap 33454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator