HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdjreui Structured version   Unicode version

Theorem cdjreui 27027
Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdjreu.1  |-  A  e.  SH
cdjreu.2  |-  B  e.  SH
Assertion
Ref Expression
cdjreui  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem cdjreui
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdjreu.1 . . . . 5  |-  A  e.  SH
2 cdjreu.2 . . . . 5  |-  B  e.  SH
31, 2shseli 25910 . . . 4  |-  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
43biimpi 194 . . 3  |-  ( C  e.  ( A  +H  B )  ->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
5 reeanv 3029 . . . . 5  |-  ( E. y  e.  B  E. w  e.  B  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  <->  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )
6 eqtr2 2494 . . . . . . 7  |-  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  -> 
( x  +h  y
)  =  ( z  +h  w ) )
71sheli 25807 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  x  e.  ~H )
82sheli 25807 . . . . . . . . . . . 12  |-  ( y  e.  B  ->  y  e.  ~H )
97, 8anim12i 566 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  e.  ~H  /\  y  e.  ~H )
)
101sheli 25807 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  z  e.  ~H )
112sheli 25807 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  w  e.  ~H )
1210, 11anim12i 566 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( z  e.  ~H  /\  w  e.  ~H )
)
13 hvaddsub4 25671 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
149, 12, 13syl2an 477 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  A  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1514an4s 824 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1615adantll 713 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
17 shsubcl 25814 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
182, 17mp3an1 1311 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
1918ancoms 453 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( w  -h  y
)  e.  B )
20 eleq1 2539 . . . . . . . . . . . . . 14  |-  ( ( x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  B  <->  ( w  -h  y )  e.  B
) )
2119, 20syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
2221adantl 466 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
23 shsubcl 25814 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
241, 23mp3an1 1311 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
2524adantr 465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( x  -h  z
)  e.  A )
2622, 25jctild 543 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) ) )
2726adantll 713 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B ) ) )
28 elin 3687 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  ( A  i^i  B )  <->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) )
29 eleq2 2540 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  =  0H  ->  (
( x  -h  z
)  e.  ( A  i^i  B )  <->  ( x  -h  z )  e.  0H ) )
3028, 29syl5bbr 259 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  =  0H  ->  (
( ( x  -h  z )  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3130ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3227, 31sylibd 214 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
x  -h  z )  e.  0H ) )
33 elch0 25848 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  0H  <->  ( x  -h  z )  =  0h )
34 hvsubeq0 25661 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  =  0h  <->  x  =  z ) )
3533, 34syl5bb 257 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
367, 10, 35syl2an 477 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
3736ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  e.  0H  <->  x  =  z ) )
3832, 37sylibd 214 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  x  =  z ) )
3916, 38sylbid 215 . . . . . . 7  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  ->  x  =  z ) )
406, 39syl5 32 . . . . . 6  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z )
)
4140rexlimdvva 2962 . . . . 5  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( E. y  e.  B  E. w  e.  B  ( C  =  (
x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z ) )
425, 41syl5bir 218 . . . 4  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) )
4342ralrimivva 2885 . . 3  |-  ( ( A  i^i  B )  =  0H  ->  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
)
444, 43anim12i 566 . 2  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  -> 
( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
) )
45 oveq1 6289 . . . . . 6  |-  ( x  =  z  ->  (
x  +h  y )  =  ( z  +h  y ) )
4645eqeq2d 2481 . . . . 5  |-  ( x  =  z  ->  ( C  =  ( x  +h  y )  <->  C  =  ( z  +h  y
) ) )
4746rexbidv 2973 . . . 4  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. y  e.  B  C  =  ( z  +h  y
) ) )
48 oveq2 6290 . . . . . 6  |-  ( y  =  w  ->  (
z  +h  y )  =  ( z  +h  w ) )
4948eqeq2d 2481 . . . . 5  |-  ( y  =  w  ->  ( C  =  ( z  +h  y )  <->  C  =  ( z  +h  w
) ) )
5049cbvrexv 3089 . . . 4  |-  ( E. y  e.  B  C  =  ( z  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) )
5147, 50syl6bb 261 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) ) )
5251reu4 3297 . 2  |-  ( E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  <->  ( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) ) )
5344, 52sylibr 212 1  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   E!wreu 2816    i^i cin 3475  (class class class)co 6282   ~Hchil 25512    +h cva 25513   0hc0v 25517    -h cmv 25518   SHcsh 25521    +H cph 25524   0Hc0h 25528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-hilex 25592  ax-hfvadd 25593  ax-hvcom 25594  ax-hvass 25595  ax-hv0cl 25596  ax-hvaddid 25597  ax-hfvmul 25598  ax-hvmulid 25599  ax-hvmulass 25600  ax-hvdistr1 25601  ax-hvdistr2 25602  ax-hvmul0 25603
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-grpo 24869  df-ablo 24960  df-hvsub 25564  df-sh 25800  df-ch0 25847  df-shs 25902
This theorem is referenced by:  cdj3lem2  27030
  Copyright terms: Public domain W3C validator