HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdjreui Unicode version

Theorem cdjreui 23888
Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdjreu.1  |-  A  e.  SH
cdjreu.2  |-  B  e.  SH
Assertion
Ref Expression
cdjreui  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem cdjreui
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdjreu.1 . . . . 5  |-  A  e.  SH
2 cdjreu.2 . . . . 5  |-  B  e.  SH
31, 2shseli 22771 . . . 4  |-  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
43biimpi 187 . . 3  |-  ( C  e.  ( A  +H  B )  ->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
5 reeanv 2835 . . . . 5  |-  ( E. y  e.  B  E. w  e.  B  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  <->  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )
6 eqtr2 2422 . . . . . . 7  |-  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  -> 
( x  +h  y
)  =  ( z  +h  w ) )
71sheli 22669 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  x  e.  ~H )
82sheli 22669 . . . . . . . . . . . 12  |-  ( y  e.  B  ->  y  e.  ~H )
97, 8anim12i 550 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  e.  ~H  /\  y  e.  ~H )
)
101sheli 22669 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  z  e.  ~H )
112sheli 22669 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  w  e.  ~H )
1210, 11anim12i 550 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( z  e.  ~H  /\  w  e.  ~H )
)
13 hvaddsub4 22533 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
149, 12, 13syl2an 464 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  A  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1514an4s 800 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1615adantll 695 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
17 shsubcl 22676 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
182, 17mp3an1 1266 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
1918ancoms 440 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( w  -h  y
)  e.  B )
20 eleq1 2464 . . . . . . . . . . . . . 14  |-  ( ( x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  B  <->  ( w  -h  y )  e.  B
) )
2119, 20syl5ibrcom 214 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
2221adantl 453 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
23 shsubcl 22676 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
241, 23mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
2524adantr 452 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( x  -h  z
)  e.  A )
2622, 25jctild 528 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) ) )
2726adantll 695 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B ) ) )
28 elin 3490 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  ( A  i^i  B )  <->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) )
29 eleq2 2465 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  =  0H  ->  (
( x  -h  z
)  e.  ( A  i^i  B )  <->  ( x  -h  z )  e.  0H ) )
3028, 29syl5bbr 251 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  =  0H  ->  (
( ( x  -h  z )  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3130ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3227, 31sylibd 206 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
x  -h  z )  e.  0H ) )
33 elch0 22709 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  0H  <->  ( x  -h  z )  =  0h )
34 hvsubeq0 22523 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  =  0h  <->  x  =  z ) )
3533, 34syl5bb 249 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
367, 10, 35syl2an 464 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
3736ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  e.  0H  <->  x  =  z ) )
3832, 37sylibd 206 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  x  =  z ) )
3916, 38sylbid 207 . . . . . . 7  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  ->  x  =  z ) )
406, 39syl5 30 . . . . . 6  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z )
)
4140rexlimdvva 2797 . . . . 5  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( E. y  e.  B  E. w  e.  B  ( C  =  (
x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z ) )
425, 41syl5bir 210 . . . 4  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) )
4342ralrimivva 2758 . . 3  |-  ( ( A  i^i  B )  =  0H  ->  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
)
444, 43anim12i 550 . 2  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  -> 
( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
) )
45 oveq1 6047 . . . . . 6  |-  ( x  =  z  ->  (
x  +h  y )  =  ( z  +h  y ) )
4645eqeq2d 2415 . . . . 5  |-  ( x  =  z  ->  ( C  =  ( x  +h  y )  <->  C  =  ( z  +h  y
) ) )
4746rexbidv 2687 . . . 4  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. y  e.  B  C  =  ( z  +h  y
) ) )
48 oveq2 6048 . . . . . 6  |-  ( y  =  w  ->  (
z  +h  y )  =  ( z  +h  w ) )
4948eqeq2d 2415 . . . . 5  |-  ( y  =  w  ->  ( C  =  ( z  +h  y )  <->  C  =  ( z  +h  w
) ) )
5049cbvrexv 2893 . . . 4  |-  ( E. y  e.  B  C  =  ( z  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) )
5147, 50syl6bb 253 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) ) )
5251reu4 3088 . 2  |-  ( E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  <->  ( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) ) )
5344, 52sylibr 204 1  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   E!wreu 2668    i^i cin 3279  (class class class)co 6040   ~Hchil 22375    +h cva 22376   0hc0v 22380    -h cmv 22381   SHcsh 22384    +H cph 22387   0Hc0h 22391
This theorem is referenced by:  cdj3lem2  23891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-hilex 22455  ax-hfvadd 22456  ax-hvcom 22457  ax-hvass 22458  ax-hv0cl 22459  ax-hvaddid 22460  ax-hfvmul 22461  ax-hvmulid 22462  ax-hvmulass 22463  ax-hvdistr1 22464  ax-hvdistr2 22465  ax-hvmul0 22466
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-grpo 21732  df-ablo 21823  df-hvsub 22427  df-sh 22662  df-ch0 22708  df-shs 22763
  Copyright terms: Public domain W3C validator