HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdjreui Structured version   Unicode version

Theorem cdjreui 27552
Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdjreu.1  |-  A  e.  SH
cdjreu.2  |-  B  e.  SH
Assertion
Ref Expression
cdjreui  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem cdjreui
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdjreu.1 . . . . 5  |-  A  e.  SH
2 cdjreu.2 . . . . 5  |-  B  e.  SH
31, 2shseli 26435 . . . 4  |-  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
43biimpi 194 . . 3  |-  ( C  e.  ( A  +H  B )  ->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
5 reeanv 3022 . . . . 5  |-  ( E. y  e.  B  E. w  e.  B  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  <->  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )
6 eqtr2 2481 . . . . . . 7  |-  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  -> 
( x  +h  y
)  =  ( z  +h  w ) )
71sheli 26332 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  x  e.  ~H )
82sheli 26332 . . . . . . . . . . . 12  |-  ( y  e.  B  ->  y  e.  ~H )
97, 8anim12i 564 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  e.  ~H  /\  y  e.  ~H )
)
101sheli 26332 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  z  e.  ~H )
112sheli 26332 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  w  e.  ~H )
1210, 11anim12i 564 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( z  e.  ~H  /\  w  e.  ~H )
)
13 hvaddsub4 26196 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
149, 12, 13syl2an 475 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  A  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1514an4s 824 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1615adantll 711 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
17 shsubcl 26339 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
182, 17mp3an1 1309 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
1918ancoms 451 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( w  -h  y
)  e.  B )
20 eleq1 2526 . . . . . . . . . . . . . 14  |-  ( ( x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  B  <->  ( w  -h  y )  e.  B
) )
2119, 20syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
2221adantl 464 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
23 shsubcl 26339 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
241, 23mp3an1 1309 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
2524adantr 463 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( x  -h  z
)  e.  A )
2622, 25jctild 541 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) ) )
2726adantll 711 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B ) ) )
28 elin 3673 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  ( A  i^i  B )  <->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) )
29 eleq2 2527 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  =  0H  ->  (
( x  -h  z
)  e.  ( A  i^i  B )  <->  ( x  -h  z )  e.  0H ) )
3028, 29syl5bbr 259 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  =  0H  ->  (
( ( x  -h  z )  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3130ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3227, 31sylibd 214 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
x  -h  z )  e.  0H ) )
33 elch0 26373 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  0H  <->  ( x  -h  z )  =  0h )
34 hvsubeq0 26186 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  =  0h  <->  x  =  z ) )
3533, 34syl5bb 257 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
367, 10, 35syl2an 475 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
3736ad2antlr 724 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  e.  0H  <->  x  =  z ) )
3832, 37sylibd 214 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  x  =  z ) )
3916, 38sylbid 215 . . . . . . 7  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  ->  x  =  z ) )
406, 39syl5 32 . . . . . 6  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z )
)
4140rexlimdvva 2953 . . . . 5  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( E. y  e.  B  E. w  e.  B  ( C  =  (
x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z ) )
425, 41syl5bir 218 . . . 4  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) )
4342ralrimivva 2875 . . 3  |-  ( ( A  i^i  B )  =  0H  ->  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
)
444, 43anim12i 564 . 2  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  -> 
( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
) )
45 oveq1 6277 . . . . . 6  |-  ( x  =  z  ->  (
x  +h  y )  =  ( z  +h  y ) )
4645eqeq2d 2468 . . . . 5  |-  ( x  =  z  ->  ( C  =  ( x  +h  y )  <->  C  =  ( z  +h  y
) ) )
4746rexbidv 2965 . . . 4  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. y  e.  B  C  =  ( z  +h  y
) ) )
48 oveq2 6278 . . . . . 6  |-  ( y  =  w  ->  (
z  +h  y )  =  ( z  +h  w ) )
4948eqeq2d 2468 . . . . 5  |-  ( y  =  w  ->  ( C  =  ( z  +h  y )  <->  C  =  ( z  +h  w
) ) )
5049cbvrexv 3082 . . . 4  |-  ( E. y  e.  B  C  =  ( z  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) )
5147, 50syl6bb 261 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) ) )
5251reu4 3290 . 2  |-  ( E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  <->  ( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) ) )
5344, 52sylibr 212 1  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   E!wreu 2806    i^i cin 3460  (class class class)co 6270   ~Hchil 26037    +h cva 26038   0hc0v 26042    -h cmv 26043   SHcsh 26046    +H cph 26049   0Hc0h 26053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-hilex 26117  ax-hfvadd 26118  ax-hvcom 26119  ax-hvass 26120  ax-hv0cl 26121  ax-hvaddid 26122  ax-hfvmul 26123  ax-hvmulid 26124  ax-hvmulass 26125  ax-hvdistr1 26126  ax-hvdistr2 26127  ax-hvmul0 26128
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-grpo 25394  df-ablo 25485  df-hvsub 26089  df-sh 26325  df-ch0 26372  df-shs 26427
This theorem is referenced by:  cdj3lem2  27555
  Copyright terms: Public domain W3C validator