HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2a Structured version   Unicode version

Theorem cdj3lem2a 27553
Description: Lemma for cdj3i 27558. Closure of the first-component function  S. (Contributed by NM, 25-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1  |-  A  e.  SH
cdj3lem2.2  |-  B  e.  SH
cdj3lem2.3  |-  S  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ z  e.  A  E. w  e.  B  x  =  ( z  +h  w ) ) )
Assertion
Ref Expression
cdj3lem2a  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  -> 
( S `  C
)  e.  A )
Distinct variable groups:    x, z, w, A    x, B, z, w    x, C, z, w
Allowed substitution hints:    S( x, z, w)

Proof of Theorem cdj3lem2a
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . . 4  |-  A  e.  SH
2 cdj3lem2.2 . . . 4  |-  B  e.  SH
31, 2shseli 26432 . . 3  |-  ( C  e.  ( A  +H  B )  <->  E. v  e.  A  E. u  e.  B  C  =  ( v  +h  u
) )
4 cdj3lem2.3 . . . . . . . . . 10  |-  S  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ z  e.  A  E. w  e.  B  x  =  ( z  +h  w ) ) )
51, 2, 4cdj3lem2 27552 . . . . . . . . 9  |-  ( ( v  e.  A  /\  u  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( S `  (
v  +h  u ) )  =  v )
6 simp1 994 . . . . . . . . 9  |-  ( ( v  e.  A  /\  u  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
v  e.  A )
75, 6eqeltrd 2542 . . . . . . . 8  |-  ( ( v  e.  A  /\  u  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( S `  (
v  +h  u ) )  e.  A )
873expa 1194 . . . . . . 7  |-  ( ( ( v  e.  A  /\  u  e.  B
)  /\  ( A  i^i  B )  =  0H )  ->  ( S `  ( v  +h  u
) )  e.  A
)
9 fveq2 5848 . . . . . . . 8  |-  ( C  =  ( v  +h  u )  ->  ( S `  C )  =  ( S `  ( v  +h  u
) ) )
109eleq1d 2523 . . . . . . 7  |-  ( C  =  ( v  +h  u )  ->  (
( S `  C
)  e.  A  <->  ( S `  ( v  +h  u
) )  e.  A
) )
118, 10syl5ibr 221 . . . . . 6  |-  ( C  =  ( v  +h  u )  ->  (
( ( v  e.  A  /\  u  e.  B )  /\  ( A  i^i  B )  =  0H )  ->  ( S `  C )  e.  A ) )
1211expd 434 . . . . 5  |-  ( C  =  ( v  +h  u )  ->  (
( v  e.  A  /\  u  e.  B
)  ->  ( ( A  i^i  B )  =  0H  ->  ( S `  C )  e.  A
) ) )
1312com13 80 . . . 4  |-  ( ( A  i^i  B )  =  0H  ->  (
( v  e.  A  /\  u  e.  B
)  ->  ( C  =  ( v  +h  u )  ->  ( S `  C )  e.  A ) ) )
1413rexlimdvv 2952 . . 3  |-  ( ( A  i^i  B )  =  0H  ->  ( E. v  e.  A  E. u  e.  B  C  =  ( v  +h  u )  ->  ( S `  C )  e.  A ) )
153, 14syl5bi 217 . 2  |-  ( ( A  i^i  B )  =  0H  ->  ( C  e.  ( A  +H  B )  ->  ( S `  C )  e.  A ) )
1615impcom 428 1  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  -> 
( S `  C
)  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805    i^i cin 3460    |-> cmpt 4497   ` cfv 5570   iota_crio 6231  (class class class)co 6270    +h cva 26035   SHcsh 26043    +H cph 26046   0Hc0h 26050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-hilex 26114  ax-hfvadd 26115  ax-hvcom 26116  ax-hvass 26117  ax-hv0cl 26118  ax-hvaddid 26119  ax-hfvmul 26120  ax-hvmulid 26121  ax-hvmulass 26122  ax-hvdistr1 26123  ax-hvdistr2 26124  ax-hvmul0 26125
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-grpo 25391  df-ablo 25482  df-hvsub 26086  df-sh 26322  df-ch0 26369  df-shs 26424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator