HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2 Structured version   Unicode version

Theorem cdj3lem2 25839
Description: Lemma for cdj3i 25845. Value of the first-component function  S. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1  |-  A  e.  SH
cdj3lem2.2  |-  B  e.  SH
cdj3lem2.3  |-  S  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ z  e.  A  E. w  e.  B  x  =  ( z  +h  w ) ) )
Assertion
Ref Expression
cdj3lem2  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( S `  ( C  +h  D ) )  =  C )
Distinct variable groups:    x, z, w, A    x, B, z, w    x, C, z, w    x, D, z, w
Allowed substitution hints:    S( x, z, w)

Proof of Theorem cdj3lem2
StepHypRef Expression
1 cdj3lem2.1 . . . . 5  |-  A  e.  SH
2 cdj3lem2.2 . . . . 5  |-  B  e.  SH
31, 2shsvai 24767 . . . 4  |-  ( ( C  e.  A  /\  D  e.  B )  ->  ( C  +h  D
)  e.  ( A  +H  B ) )
4 eqeq1 2449 . . . . . . 7  |-  ( x  =  ( C  +h  D )  ->  (
x  =  ( z  +h  w )  <->  ( C  +h  D )  =  ( z  +h  w ) ) )
54rexbidv 2736 . . . . . 6  |-  ( x  =  ( C  +h  D )  ->  ( E. w  e.  B  x  =  ( z  +h  w )  <->  E. w  e.  B  ( C  +h  D )  =  ( z  +h  w ) ) )
65riotabidv 6054 . . . . 5  |-  ( x  =  ( C  +h  D )  ->  ( iota_ z  e.  A  E. w  e.  B  x  =  ( z  +h  w ) )  =  ( iota_ z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) ) )
7 cdj3lem2.3 . . . . 5  |-  S  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ z  e.  A  E. w  e.  B  x  =  ( z  +h  w ) ) )
8 riotaex 6056 . . . . 5  |-  ( iota_ z  e.  A  E. w  e.  B  ( C  +h  D )  =  ( z  +h  w ) )  e.  _V
96, 7, 8fvmpt 5774 . . . 4  |-  ( ( C  +h  D )  e.  ( A  +H  B )  ->  ( S `  ( C  +h  D ) )  =  ( iota_ z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) ) )
103, 9syl 16 . . 3  |-  ( ( C  e.  A  /\  D  e.  B )  ->  ( S `  ( C  +h  D ) )  =  ( iota_ z  e.  A  E. w  e.  B  ( C  +h  D )  =  ( z  +h  w ) ) )
11103adant3 1008 . 2  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( S `  ( C  +h  D ) )  =  ( iota_ z  e.  A  E. w  e.  B  ( C  +h  D )  =  ( z  +h  w ) ) )
12 eqid 2443 . . . . 5  |-  ( C  +h  D )  =  ( C  +h  D
)
13 oveq2 6099 . . . . . . 7  |-  ( w  =  D  ->  ( C  +h  w )  =  ( C  +h  D
) )
1413eqeq2d 2454 . . . . . 6  |-  ( w  =  D  ->  (
( C  +h  D
)  =  ( C  +h  w )  <->  ( C  +h  D )  =  ( C  +h  D ) ) )
1514rspcev 3073 . . . . 5  |-  ( ( D  e.  B  /\  ( C  +h  D
)  =  ( C  +h  D ) )  ->  E. w  e.  B  ( C  +h  D
)  =  ( C  +h  w ) )
1612, 15mpan2 671 . . . 4  |-  ( D  e.  B  ->  E. w  e.  B  ( C  +h  D )  =  ( C  +h  w ) )
17163ad2ant2 1010 . . 3  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  ->  E. w  e.  B  ( C  +h  D
)  =  ( C  +h  w ) )
18 simp1 988 . . . 4  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  ->  C  e.  A )
191, 2cdjreui 25836 . . . . . 6  |-  ( ( ( C  +h  D
)  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) )
203, 19sylan 471 . . . . 5  |-  ( ( ( C  e.  A  /\  D  e.  B
)  /\  ( A  i^i  B )  =  0H )  ->  E! z  e.  A  E. w  e.  B  ( C  +h  D )  =  ( z  +h  w ) )
21203impa 1182 . . . 4  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  ->  E! z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) )
22 oveq1 6098 . . . . . . 7  |-  ( z  =  C  ->  (
z  +h  w )  =  ( C  +h  w ) )
2322eqeq2d 2454 . . . . . 6  |-  ( z  =  C  ->  (
( C  +h  D
)  =  ( z  +h  w )  <->  ( C  +h  D )  =  ( C  +h  w ) ) )
2423rexbidv 2736 . . . . 5  |-  ( z  =  C  ->  ( E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w )  <->  E. w  e.  B  ( C  +h  D )  =  ( C  +h  w ) ) )
2524riota2 6075 . . . 4  |-  ( ( C  e.  A  /\  E! z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) )  ->  ( E. w  e.  B  ( C  +h  D )  =  ( C  +h  w )  <-> 
( iota_ z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) )  =  C ) )
2618, 21, 25syl2anc 661 . . 3  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( E. w  e.  B  ( C  +h  D )  =  ( C  +h  w )  <-> 
( iota_ z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) )  =  C ) )
2717, 26mpbid 210 . 2  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( iota_ z  e.  A  E. w  e.  B  ( C  +h  D
)  =  ( z  +h  w ) )  =  C )
2811, 27eqtrd 2475 1  |-  ( ( C  e.  A  /\  D  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( S `  ( C  +h  D ) )  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2716   E!wreu 2717    i^i cin 3327    e. cmpt 4350   ` cfv 5418   iota_crio 6051  (class class class)co 6091    +h cva 24322   SHcsh 24330    +H cph 24333   0Hc0h 24337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-hilex 24401  ax-hfvadd 24402  ax-hvcom 24403  ax-hvass 24404  ax-hv0cl 24405  ax-hvaddid 24406  ax-hfvmul 24407  ax-hvmulid 24408  ax-hvmulass 24409  ax-hvdistr1 24410  ax-hvdistr2 24411  ax-hvmul0 24412
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-po 4641  df-so 4642  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-grpo 23678  df-ablo 23769  df-hvsub 24373  df-sh 24609  df-ch0 24656  df-shs 24711
This theorem is referenced by:  cdj3lem2a  25840  cdj3lem2b  25841  cdj3lem3  25842  cdj3i  25845
  Copyright terms: Public domain W3C validator