HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Unicode version

Theorem cdj3lem1 25789
Description: A property of " A and  B are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj3lem1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem cdj3lem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elin 3534 . . . . . . . . . . . 12  |-  ( w  e.  ( A  i^i  B )  <->  ( w  e.  A  /\  w  e.  B ) )
2 cdj1.2 . . . . . . . . . . . . . 14  |-  B  e.  SH
3 neg1cn 10417 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
4 shmulcl 24571 . . . . . . . . . . . . . 14  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  w  e.  B )  ->  ( -u 1  .h  w )  e.  B
)
52, 3, 4mp3an12 1304 . . . . . . . . . . . . 13  |-  ( w  e.  B  ->  ( -u 1  .h  w )  e.  B )
65anim2i 569 . . . . . . . . . . . 12  |-  ( ( w  e.  A  /\  w  e.  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B
) )
71, 6sylbi 195 . . . . . . . . . . 11  |-  ( w  e.  ( A  i^i  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B ) )
8 fveq2 5686 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  y )  =  ( normh `  w )
)
98oveq1d 6101 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( normh `  y )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  z
) ) )
10 oveq1 6093 . . . . . . . . . . . . . . 15  |-  ( y  =  w  ->  (
y  +h  z )  =  ( w  +h  z ) )
1110fveq2d 5690 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  ( y  +h  z ) )  =  ( normh `  ( w  +h  z ) ) )
1211oveq2d 6102 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
x  x.  ( normh `  ( y  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  z ) ) ) )
139, 12breq12d 4300 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) ) ) )
14 fveq2 5686 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  z )  =  ( normh `  ( -u 1  .h  w ) ) )
1514oveq2d 6102 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
( normh `  w )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) ) )
16 oveq2 6094 . . . . . . . . . . . . . . 15  |-  ( z  =  ( -u 1  .h  w )  ->  (
w  +h  z )  =  ( w  +h  ( -u 1  .h  w
) ) )
1716fveq2d 5690 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  ( w  +h  z ) )  =  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )
1817oveq2d 6102 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
x  x.  ( normh `  ( w  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) ) )
1915, 18breq12d 4300 . . . . . . . . . . . 12  |-  ( z  =  ( -u 1  .h  w )  ->  (
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2013, 19rspc2v 3074 . . . . . . . . . . 11  |-  ( ( w  e.  A  /\  ( -u 1  .h  w
)  e.  B )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  ( normh `  z )
)  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
217, 20syl 16 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  ( A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) )  -> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2221adantl 466 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
23 cdj1.1 . . . . . . . . . . . 12  |-  A  e.  SH
2423, 2shincli 24716 . . . . . . . . . . 11  |-  ( A  i^i  B )  e.  SH
2524sheli 24567 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  w  e.  ~H )
26 normneg 24497 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( -u 1  .h  w ) )  =  ( normh `  w )
)
2726oveq2d 6102 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( ( normh `  w )  +  ( normh `  w
) ) )
28 normcl 24478 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  RR )
2928recnd 9404 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  CC )
30292timesd 10559 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
2  x.  ( normh `  w ) )  =  ( ( normh `  w
)  +  ( normh `  w ) ) )
3127, 30eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w ) ) )
3231adantl 466 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w )
) )
33 hvnegid 24380 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ~H  ->  (
w  +h  ( -u
1  .h  w ) )  =  0h )
3433fveq2d 5690 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  ( normh `  0h )
)
35 norm0 24481 . . . . . . . . . . . . . . . 16  |-  ( normh `  0h )  =  0
3634, 35syl6eq 2486 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  0 )
3736oveq2d 6102 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  =  ( x  x.  0 ) )
38 recn 9364 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  e.  CC )
3938mul01d 9560 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
x  x.  0 )  =  0 )
4037, 39sylan9eqr 2492 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  0 )
41 2t0e0 10469 . . . . . . . . . . . . 13  |-  ( 2  x.  0 )  =  0
4240, 41syl6eqr 2488 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  ( 2  x.  0 ) )
4332, 42breq12d 4300 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
44 0re 9378 . . . . . . . . . . . . . . 15  |-  0  e.  RR
45 letri3 9452 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR )  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
4628, 44, 45sylancl 662 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
47 normge0 24479 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  0  <_  ( normh `  w )
)
4847biantrud 507 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( ( normh `  w )  <_  0  /\  0  <_  ( normh `  w ) ) ) )
49 2re 10383 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
50 2pos 10405 . . . . . . . . . . . . . . . . 17  |-  0  <  2
5149, 50pm3.2i 455 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
52 lemul2 10174 . . . . . . . . . . . . . . . 16  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( normh `  w
)  <_  0  <->  ( 2  x.  ( normh `  w
) )  <_  (
2  x.  0 ) ) )
5344, 51, 52mp3an23 1306 . . . . . . . . . . . . . . 15  |-  ( (
normh `  w )  e.  RR  ->  ( ( normh `  w )  <_ 
0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5428, 53syl 16 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5546, 48, 543bitr2rd 282 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  ( normh `  w )  =  0 ) )
56 norm-i 24482 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  w  =  0h ) )
5755, 56bitrd 253 . . . . . . . . . . . 12  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  w  =  0h ) )
5857adantl 466 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 )  <->  w  =  0h ) )
5943, 58bitrd 253 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6025, 59sylan2 474 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6122, 60sylibd 214 . . . . . . . 8  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  w  =  0h ) )
6261impancom 440 . . . . . . 7  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  =  0h ) )
63 elch0 24608 . . . . . . 7  |-  ( w  e.  0H  <->  w  =  0h )
6462, 63syl6ibr 227 . . . . . 6  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  e.  0H ) )
6564ssrdv 3357 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  C_  0H )
6665ex 434 . . . 4  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  C_  0H )
)
67 shle0 24796 . . . . 5  |-  ( ( A  i^i  B )  e.  SH  ->  (
( A  i^i  B
)  C_  0H  <->  ( A  i^i  B )  =  0H ) )
6824, 67ax-mp 5 . . . 4  |-  ( ( A  i^i  B ) 
C_  0H  <->  ( A  i^i  B )  =  0H )
6966, 68syl6ib 226 . . 3  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  =  0H ) )
7069adantld 467 . 2  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) ) )  ->  ( A  i^i  B )  =  0H ) )
7170rexlimiv 2830 1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711    i^i cin 3322    C_ wss 3323   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411   -ucneg 9588   2c2 10363   ~Hchil 24272    +h cva 24273    .h csm 24274   normhcno 24276   0hc0v 24277   SHcsh 24281   0Hc0h 24288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-hilex 24352  ax-hfvadd 24353  ax-hvcom 24354  ax-hv0cl 24356  ax-hvaddid 24357  ax-hfvmul 24358  ax-hvmulid 24359  ax-hvmulass 24360  ax-hvdistr1 24361  ax-hvdistr2 24362  ax-hvmul0 24363  ax-hfi 24432  ax-his1 24435  ax-his3 24437  ax-his4 24438
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-hnorm 24321  df-hvsub 24324  df-sh 24560  df-ch0 24607
This theorem is referenced by:  cdj3lem2b  25792  cdj3i  25796
  Copyright terms: Public domain W3C validator