HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Structured version   Unicode version

Theorem cdj3lem1 25983
Description: A property of " A and  B are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj3lem1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem cdj3lem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elin 3640 . . . . . . . . . . . 12  |-  ( w  e.  ( A  i^i  B )  <->  ( w  e.  A  /\  w  e.  B ) )
2 cdj1.2 . . . . . . . . . . . . . 14  |-  B  e.  SH
3 neg1cn 10529 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
4 shmulcl 24765 . . . . . . . . . . . . . 14  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  w  e.  B )  ->  ( -u 1  .h  w )  e.  B
)
52, 3, 4mp3an12 1305 . . . . . . . . . . . . 13  |-  ( w  e.  B  ->  ( -u 1  .h  w )  e.  B )
65anim2i 569 . . . . . . . . . . . 12  |-  ( ( w  e.  A  /\  w  e.  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B
) )
71, 6sylbi 195 . . . . . . . . . . 11  |-  ( w  e.  ( A  i^i  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B ) )
8 fveq2 5792 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  y )  =  ( normh `  w )
)
98oveq1d 6208 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( normh `  y )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  z
) ) )
10 oveq1 6200 . . . . . . . . . . . . . . 15  |-  ( y  =  w  ->  (
y  +h  z )  =  ( w  +h  z ) )
1110fveq2d 5796 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  ( y  +h  z ) )  =  ( normh `  ( w  +h  z ) ) )
1211oveq2d 6209 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
x  x.  ( normh `  ( y  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  z ) ) ) )
139, 12breq12d 4406 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) ) ) )
14 fveq2 5792 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  z )  =  ( normh `  ( -u 1  .h  w ) ) )
1514oveq2d 6209 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
( normh `  w )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) ) )
16 oveq2 6201 . . . . . . . . . . . . . . 15  |-  ( z  =  ( -u 1  .h  w )  ->  (
w  +h  z )  =  ( w  +h  ( -u 1  .h  w
) ) )
1716fveq2d 5796 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  ( w  +h  z ) )  =  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )
1817oveq2d 6209 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
x  x.  ( normh `  ( w  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) ) )
1915, 18breq12d 4406 . . . . . . . . . . . 12  |-  ( z  =  ( -u 1  .h  w )  ->  (
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2013, 19rspc2v 3179 . . . . . . . . . . 11  |-  ( ( w  e.  A  /\  ( -u 1  .h  w
)  e.  B )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  ( normh `  z )
)  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
217, 20syl 16 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  ( A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) )  -> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2221adantl 466 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
23 cdj1.1 . . . . . . . . . . . 12  |-  A  e.  SH
2423, 2shincli 24910 . . . . . . . . . . 11  |-  ( A  i^i  B )  e.  SH
2524sheli 24761 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  w  e.  ~H )
26 normneg 24691 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( -u 1  .h  w ) )  =  ( normh `  w )
)
2726oveq2d 6209 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( ( normh `  w )  +  ( normh `  w
) ) )
28 normcl 24672 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  RR )
2928recnd 9516 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  CC )
30292timesd 10671 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
2  x.  ( normh `  w ) )  =  ( ( normh `  w
)  +  ( normh `  w ) ) )
3127, 30eqtr4d 2495 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w ) ) )
3231adantl 466 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w )
) )
33 hvnegid 24574 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ~H  ->  (
w  +h  ( -u
1  .h  w ) )  =  0h )
3433fveq2d 5796 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  ( normh `  0h )
)
35 norm0 24675 . . . . . . . . . . . . . . . 16  |-  ( normh `  0h )  =  0
3634, 35syl6eq 2508 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  0 )
3736oveq2d 6209 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  =  ( x  x.  0 ) )
38 recn 9476 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  e.  CC )
3938mul01d 9672 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
x  x.  0 )  =  0 )
4037, 39sylan9eqr 2514 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  0 )
41 2t0e0 10581 . . . . . . . . . . . . 13  |-  ( 2  x.  0 )  =  0
4240, 41syl6eqr 2510 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  ( 2  x.  0 ) )
4332, 42breq12d 4406 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
44 0re 9490 . . . . . . . . . . . . . . 15  |-  0  e.  RR
45 letri3 9564 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR )  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
4628, 44, 45sylancl 662 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
47 normge0 24673 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  0  <_  ( normh `  w )
)
4847biantrud 507 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( ( normh `  w )  <_  0  /\  0  <_  ( normh `  w ) ) ) )
49 2re 10495 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
50 2pos 10517 . . . . . . . . . . . . . . . . 17  |-  0  <  2
5149, 50pm3.2i 455 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
52 lemul2 10286 . . . . . . . . . . . . . . . 16  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( normh `  w
)  <_  0  <->  ( 2  x.  ( normh `  w
) )  <_  (
2  x.  0 ) ) )
5344, 51, 52mp3an23 1307 . . . . . . . . . . . . . . 15  |-  ( (
normh `  w )  e.  RR  ->  ( ( normh `  w )  <_ 
0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5428, 53syl 16 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5546, 48, 543bitr2rd 282 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  ( normh `  w )  =  0 ) )
56 norm-i 24676 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  w  =  0h ) )
5755, 56bitrd 253 . . . . . . . . . . . 12  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  w  =  0h ) )
5857adantl 466 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 )  <->  w  =  0h ) )
5943, 58bitrd 253 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6025, 59sylan2 474 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6122, 60sylibd 214 . . . . . . . 8  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  w  =  0h ) )
6261impancom 440 . . . . . . 7  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  =  0h ) )
63 elch0 24802 . . . . . . 7  |-  ( w  e.  0H  <->  w  =  0h )
6462, 63syl6ibr 227 . . . . . 6  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  e.  0H ) )
6564ssrdv 3463 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  C_  0H )
6665ex 434 . . . 4  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  C_  0H )
)
67 shle0 24990 . . . . 5  |-  ( ( A  i^i  B )  e.  SH  ->  (
( A  i^i  B
)  C_  0H  <->  ( A  i^i  B )  =  0H ) )
6824, 67ax-mp 5 . . . 4  |-  ( ( A  i^i  B ) 
C_  0H  <->  ( A  i^i  B )  =  0H )
6966, 68syl6ib 226 . . 3  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  =  0H ) )
7069adantld 467 . 2  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) ) )  ->  ( A  i^i  B )  =  0H ) )
7170rexlimiv 2934 1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796    i^i cin 3428    C_ wss 3429   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   CCcc 9384   RRcr 9385   0cc0 9386   1c1 9387    + caddc 9389    x. cmul 9391    < clt 9522    <_ cle 9523   -ucneg 9700   2c2 10475   ~Hchil 24466    +h cva 24467    .h csm 24468   normhcno 24470   0hc0v 24471   SHcsh 24475   0Hc0h 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-hilex 24546  ax-hfvadd 24547  ax-hvcom 24548  ax-hv0cl 24550  ax-hvaddid 24551  ax-hfvmul 24552  ax-hvmulid 24553  ax-hvmulass 24554  ax-hvdistr1 24555  ax-hvdistr2 24556  ax-hvmul0 24557  ax-hfi 24626  ax-his1 24629  ax-his3 24631  ax-his4 24632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-rp 11096  df-seq 11917  df-exp 11976  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-hnorm 24515  df-hvsub 24518  df-sh 24754  df-ch0 24801
This theorem is referenced by:  cdj3lem2b  25986  cdj3i  25990
  Copyright terms: Public domain W3C validator