HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj1i Structured version   Unicode version

Theorem cdj1i 25836
Description: Two ways to express " A and  B are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj1i  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Distinct variable groups:    x, y,
z, w, A    x, v, B, y, z, w
Allowed substitution hint:    A( v)

Proof of Theorem cdj1i
StepHypRef Expression
1 gt0ne0 9803 . . . . . . 7  |-  ( ( w  e.  RR  /\  0  <  w )  ->  w  =/=  0 )
2 rereccl 10048 . . . . . . 7  |-  ( ( w  e.  RR  /\  w  =/=  0 )  -> 
( 1  /  w
)  e.  RR )
31, 2syldan 470 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( 1  /  w
)  e.  RR )
43adantrr 716 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
1  /  w )  e.  RR )
5 recgt0 10172 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
0  <  ( 1  /  w ) )
65adantrr 716 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  0  <  ( 1  /  w
) )
7 1red 9400 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  e.  RR )
8 1re 9384 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
9 neg1cn 10424 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  CC
10 cdj1.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  B  e.  SH
1110sheli 24615 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  z  e.  ~H )
12 hvmulcl 24414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
-u 1  e.  CC  /\  z  e.  ~H )  ->  ( -u 1  .h  z )  e.  ~H )
139, 11, 12sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  ~H )
14 normcl 24526 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  (
normh `  ( -u 1  .h  z ) )  e.  RR )
1513, 14syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
1615adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
17 readdcl 9364 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
188, 16, 17sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
1918adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
20 cdj1.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  A  e.  SH
2120sheli 24615 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  A  ->  y  e.  ~H )
22 hvsubcl 24418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  e.  ~H )
2321, 11, 22syl2an 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  e.  ~H )
24 normcl 24526 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  -h  z )  e.  ~H  ->  ( normh `  ( y  -h  z ) )  e.  RR )
2523, 24syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
26 remulcl 9366 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  RR  /\  ( normh `  ( y  -h  z ) )  e.  RR )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2725, 26sylan2 474 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  ( y  e.  A  /\  z  e.  B
) )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2827anassrs 648 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
2928adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
30 normge0 24527 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
3113, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  B  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
32 addge01 9848 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
338, 32mpan 670 . . . . . . . . . . . . . . . . . . 19  |-  ( (
normh `  ( -u 1  .h  z ) )  e.  RR  ->  ( 0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
3433biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( normh `  ( -u 1  .h  z ) )  e.  RR  /\  0  <_ 
( normh `  ( -u 1  .h  z ) ) )  ->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) )
3515, 31, 34syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  B  ->  1  <_  ( 1  +  (
normh `  ( -u 1  .h  z ) ) ) )
3635ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) )
37 shmulcl 24619 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
3810, 9, 37mp3an12 1304 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  B )
39 fveq2 5690 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  v )  =  ( normh `  ( -u 1  .h  z ) ) )
4039oveq2d 6106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
( normh `  y )  +  ( normh `  v
) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
41 oveq2 6098 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  ( -u 1  .h  z )  ->  (
y  +h  v )  =  ( y  +h  ( -u 1  .h  z ) ) )
4241fveq2d 5694 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  ( y  +h  v ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
4342oveq2d 6106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
w  x.  ( normh `  ( y  +h  v
) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4440, 43breq12d 4304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( -u 1  .h  z )  ->  (
( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  <-> 
( ( normh `  y
)  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4544rspcv 3068 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  B  -> 
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4638, 45syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4746imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  B  /\  A. v  e.  B  ( ( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4847ad2ant2lr 747 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
49 oveq1 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( normh `  y
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5049eqcoms 2445 . . . . . . . . . . . . . . . . . 18  |-  ( (
normh `  y )  =  1  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5150ad2antll 728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
52 hvsubval 24417 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5321, 11, 52syl2an 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5453fveq2d 5694 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
5554oveq2d 6106 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5655adantll 713 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5756adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5848, 51, 573brtr4d 4321 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) )
597, 19, 29, 36, 58letrd 9527 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( w  x.  ( normh `  ( y  -h  z
) ) ) )
6059ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
6160adantllr 718 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
62 simplll 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  RR )
6323adantll 713 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
y  -h  z )  e.  ~H )
6463, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
6562, 64, 26syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
66 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  0  <  w )
67 lediv1 10193 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
688, 67mp3an1 1301 . . . . . . . . . . . . . 14  |-  ( ( ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
6965, 62, 66, 68syl12anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
1  <_  ( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
7061, 69sylibd 214 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  ( 1  /  w )  <_  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) ) )
7170imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( ( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) )
7225recnd 9411 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
7372adantll 713 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
74 recn 9371 . . . . . . . . . . . . . 14  |-  ( w  e.  RR  ->  w  e.  CC )
7574ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  CC )
761ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  =/=  0 )
7773, 75, 76divcan3d 10111 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w )  =  ( normh `  ( y  -h  z ) ) )
7877adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w )  =  (
normh `  ( y  -h  z ) ) )
7971, 78breqtrd 4315 . . . . . . . . . 10  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) )
8079exp43 612 . . . . . . . . 9  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( z  e.  B  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8180com23 78 . . . . . . . 8  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( z  e.  B  ->  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8281ralrimdv 2804 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  ->  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8382ralimdva 2793 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( A. y  e.  A  A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8483impr 619 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
854, 6, 84jca32 535 . . . 4  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) ) )
8685ex 434 . . 3  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  ( (
1  /  w )  e.  RR  /\  (
0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) ) )
87 breq2 4295 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  (
0  <  x  <->  0  <  ( 1  /  w ) ) )
88 breq1 4294 . . . . . . 7  |-  ( x  =  ( 1  /  w )  ->  (
x  <_  ( normh `  ( y  -h  z
) )  <->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
8988imbi2d 316 . . . . . 6  |-  ( x  =  ( 1  /  w )  ->  (
( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
90892ralbidv 2756 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
9187, 90anbi12d 710 . . . 4  |-  ( x  =  ( 1  /  w )  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) )  <->  ( 0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) )
9291rspcev 3072 . . 3  |-  ( ( ( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) )
9386, 92syl6 33 . 2  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) ) )
9493rexlimiv 2834 1  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715   class class class wbr 4291   ` cfv 5417  (class class class)co 6090   CCcc 9279   RRcr 9280   0cc0 9281   1c1 9282    + caddc 9284    x. cmul 9286    < clt 9417    <_ cle 9418   -ucneg 9595    / cdiv 9992   ~Hchil 24320    +h cva 24321    .h csm 24322   normhcno 24324    -h cmv 24326   SHcsh 24329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359  ax-hilex 24400  ax-hfvadd 24401  ax-hv0cl 24404  ax-hfvmul 24406  ax-hvmul0 24411  ax-hfi 24480  ax-his1 24483  ax-his3 24485  ax-his4 24486
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-sup 7690  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-rp 10991  df-seq 11806  df-exp 11865  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-hnorm 24369  df-hvsub 24372  df-sh 24608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator