HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj1i Structured version   Unicode version

Theorem cdj1i 27056
Description: Two ways to express " A and  B are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj1i  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Distinct variable groups:    x, y,
z, w, A    x, v, B, y, z, w
Allowed substitution hint:    A( v)

Proof of Theorem cdj1i
StepHypRef Expression
1 gt0ne0 10017 . . . . . . 7  |-  ( ( w  e.  RR  /\  0  <  w )  ->  w  =/=  0 )
2 rereccl 10262 . . . . . . 7  |-  ( ( w  e.  RR  /\  w  =/=  0 )  -> 
( 1  /  w
)  e.  RR )
31, 2syldan 470 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( 1  /  w
)  e.  RR )
43adantrr 716 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
1  /  w )  e.  RR )
5 recgt0 10386 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
0  <  ( 1  /  w ) )
65adantrr 716 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  0  <  ( 1  /  w
) )
7 1red 9611 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  e.  RR )
8 1re 9595 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
9 neg1cn 10639 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  CC
10 cdj1.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  B  e.  SH
1110sheli 25835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  z  e.  ~H )
12 hvmulcl 25634 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
-u 1  e.  CC  /\  z  e.  ~H )  ->  ( -u 1  .h  z )  e.  ~H )
139, 11, 12sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  ~H )
14 normcl 25746 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  (
normh `  ( -u 1  .h  z ) )  e.  RR )
1513, 14syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
1615adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
17 readdcl 9575 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
188, 16, 17sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
1918adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
20 cdj1.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  A  e.  SH
2120sheli 25835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  A  ->  y  e.  ~H )
22 hvsubcl 25638 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  e.  ~H )
2321, 11, 22syl2an 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  e.  ~H )
24 normcl 25746 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  -h  z )  e.  ~H  ->  ( normh `  ( y  -h  z ) )  e.  RR )
2523, 24syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
26 remulcl 9577 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  RR  /\  ( normh `  ( y  -h  z ) )  e.  RR )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2725, 26sylan2 474 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  ( y  e.  A  /\  z  e.  B
) )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2827anassrs 648 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
2928adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
30 normge0 25747 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
3113, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  B  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
32 addge01 10062 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
338, 32mpan 670 . . . . . . . . . . . . . . . . . . 19  |-  ( (
normh `  ( -u 1  .h  z ) )  e.  RR  ->  ( 0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
3433biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( normh `  ( -u 1  .h  z ) )  e.  RR  /\  0  <_ 
( normh `  ( -u 1  .h  z ) ) )  ->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) )
3515, 31, 34syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  B  ->  1  <_  ( 1  +  (
normh `  ( -u 1  .h  z ) ) ) )
3635ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) )
37 shmulcl 25839 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
3810, 9, 37mp3an12 1314 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  B )
39 fveq2 5866 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  v )  =  ( normh `  ( -u 1  .h  z ) ) )
4039oveq2d 6300 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
( normh `  y )  +  ( normh `  v
) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
41 oveq2 6292 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  ( -u 1  .h  z )  ->  (
y  +h  v )  =  ( y  +h  ( -u 1  .h  z ) ) )
4241fveq2d 5870 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  ( y  +h  v ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
4342oveq2d 6300 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
w  x.  ( normh `  ( y  +h  v
) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4440, 43breq12d 4460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( -u 1  .h  z )  ->  (
( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  <-> 
( ( normh `  y
)  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4544rspcv 3210 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  B  -> 
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4638, 45syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4746imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  B  /\  A. v  e.  B  ( ( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4847ad2ant2lr 747 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
49 oveq1 6291 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( normh `  y
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5049eqcoms 2479 . . . . . . . . . . . . . . . . . 18  |-  ( (
normh `  y )  =  1  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5150ad2antll 728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
52 hvsubval 25637 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5321, 11, 52syl2an 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5453fveq2d 5870 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
5554oveq2d 6300 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5655adantll 713 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5756adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5848, 51, 573brtr4d 4477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) )
597, 19, 29, 36, 58letrd 9738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( w  x.  ( normh `  ( y  -h  z
) ) ) )
6059ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
6160adantllr 718 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
62 simplll 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  RR )
6323adantll 713 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
y  -h  z )  e.  ~H )
6463, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
6562, 64, 26syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
66 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  0  <  w )
67 lediv1 10407 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
688, 67mp3an1 1311 . . . . . . . . . . . . . 14  |-  ( ( ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
6965, 62, 66, 68syl12anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
1  <_  ( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
7061, 69sylibd 214 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  ( 1  /  w )  <_  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) ) )
7170imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( ( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) )
7225recnd 9622 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
7372adantll 713 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
74 recn 9582 . . . . . . . . . . . . . 14  |-  ( w  e.  RR  ->  w  e.  CC )
7574ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  CC )
761ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  =/=  0 )
7773, 75, 76divcan3d 10325 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w )  =  ( normh `  ( y  -h  z ) ) )
7877adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w )  =  (
normh `  ( y  -h  z ) ) )
7971, 78breqtrd 4471 . . . . . . . . . 10  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) )
8079exp43 612 . . . . . . . . 9  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( z  e.  B  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8180com23 78 . . . . . . . 8  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( z  e.  B  ->  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8281ralrimdv 2880 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  ->  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8382ralimdva 2872 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( A. y  e.  A  A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8483impr 619 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
854, 6, 84jca32 535 . . . 4  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) ) )
8685ex 434 . . 3  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  ( (
1  /  w )  e.  RR  /\  (
0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) ) )
87 breq2 4451 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  (
0  <  x  <->  0  <  ( 1  /  w ) ) )
88 breq1 4450 . . . . . . 7  |-  ( x  =  ( 1  /  w )  ->  (
x  <_  ( normh `  ( y  -h  z
) )  <->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
8988imbi2d 316 . . . . . 6  |-  ( x  =  ( 1  /  w )  ->  (
( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
90892ralbidv 2908 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
9187, 90anbi12d 710 . . . 4  |-  ( x  =  ( 1  /  w )  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) )  <->  ( 0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) )
9291rspcev 3214 . . 3  |-  ( ( ( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) )
9386, 92syl6 33 . 2  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) ) )
9493rexlimiv 2949 1  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    <_ cle 9629   -ucneg 9806    / cdiv 10206   ~Hchil 25540    +h cva 25541    .h csm 25542   normhcno 25544    -h cmv 25546   SHcsh 25549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-hilex 25620  ax-hfvadd 25621  ax-hv0cl 25624  ax-hfvmul 25626  ax-hvmul0 25631  ax-hfi 25700  ax-his1 25703  ax-his3 25705  ax-his4 25706
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-hnorm 25589  df-hvsub 25592  df-sh 25828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator