MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaun Unicode version

Theorem cdaun 8008
Description: Cardinal addition is equinumerous to union for disjoint sets. (Contributed by NM, 5-Apr-2007.)
Assertion
Ref Expression
cdaun  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A  +c  B )  ~~  ( A  u.  B
) )

Proof of Theorem cdaun
StepHypRef Expression
1 cdaval 8006 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
213adant3 977 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A  +c  B )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
3 0ex 4299 . . . . . 6  |-  (/)  e.  _V
4 xpsneng 7152 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
53, 4mpan2 653 . . . . 5  |-  ( A  e.  V  ->  ( A  X.  { (/) } ) 
~~  A )
6 1on 6690 . . . . . 6  |-  1o  e.  On
7 xpsneng 7152 . . . . . 6  |-  ( ( B  e.  W  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
86, 7mpan2 653 . . . . 5  |-  ( B  e.  W  ->  ( B  X.  { 1o }
)  ~~  B )
95, 8anim12i 550 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B ) )
10 xp01disj 6699 . . . . 5  |-  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) )  =  (/)
1110jctl 526 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( ( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/)  /\  ( A  i^i  B
)  =  (/) ) )
12 unen 7148 . . . 4  |-  ( ( ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B )  /\  (
( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o } ) )  =  (/)  /\  ( A  i^i  B )  =  (/) ) )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) 
~~  ( A  u.  B ) )
139, 11, 12syl2an 464 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) 
~~  ( A  u.  B ) )
14133impa 1148 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  X.  { (/)
} )  u.  ( B  X.  { 1o }
) )  ~~  ( A  u.  B )
)
152, 14eqbrtrd 4192 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  ( A  i^i  B )  =  (/) )  ->  ( A  +c  B )  ~~  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2916    u. cun 3278    i^i cin 3279   (/)c0 3588   {csn 3774   class class class wbr 4172   Oncon0 4541    X. cxp 4835  (class class class)co 6040   1oc1o 6676    ~~ cen 7065    +c ccda 8003
This theorem is referenced by:  cdaenun  8010  cda0en  8015  ficardun  8038  ackbij1lem9  8064  canthp1lem1  8483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1o 6683  df-en 7069  df-cda 8004
  Copyright terms: Public domain W3C validator