MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdafi Unicode version

Theorem cdafi 8026
Description: The cardinal sum of two finite sets is finite. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
cdafi  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  ( A  +c  B )  ~<  om )

Proof of Theorem cdafi
StepHypRef Expression
1 relsdom 7075 . . . 4  |-  Rel  ~<
21brrelexi 4877 . . 3  |-  ( A 
~<  om  ->  A  e.  _V )
31brrelexi 4877 . . 3  |-  ( B 
~<  om  ->  B  e.  _V )
4 cdaval 8006 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
52, 3, 4syl2an 464 . 2  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  ( A  +c  B )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
6 0elon 4594 . . . . . 6  |-  (/)  e.  On
7 xpsneng 7152 . . . . . 6  |-  ( ( A  e.  _V  /\  (/) 
e.  On )  -> 
( A  X.  { (/)
} )  ~~  A
)
82, 6, 7sylancl 644 . . . . 5  |-  ( A 
~<  om  ->  ( A  X.  { (/) } )  ~~  A )
9 sdomen1 7210 . . . . 5  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( ( A  X.  { (/) } )  ~<  om 
<->  A  ~<  om )
)
108, 9syl 16 . . . 4  |-  ( A 
~<  om  ->  ( ( A  X.  { (/) } ) 
~<  om  <->  A  ~<  om )
)
1110ibir 234 . . 3  |-  ( A 
~<  om  ->  ( A  X.  { (/) } )  ~<  om )
12 1on 6690 . . . . . 6  |-  1o  e.  On
13 xpsneng 7152 . . . . . 6  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
143, 12, 13sylancl 644 . . . . 5  |-  ( B 
~<  om  ->  ( B  X.  { 1o } ) 
~~  B )
15 sdomen1 7210 . . . . 5  |-  ( ( B  X.  { 1o } )  ~~  B  ->  ( ( B  X.  { 1o } )  ~<  om 
<->  B  ~<  om )
)
1614, 15syl 16 . . . 4  |-  ( B 
~<  om  ->  ( ( B  X.  { 1o }
)  ~<  om  <->  B  ~<  om )
)
1716ibir 234 . . 3  |-  ( B 
~<  om  ->  ( B  X.  { 1o } ) 
~<  om )
18 unfi2 7335 . . 3  |-  ( ( ( A  X.  { (/)
} )  ~<  om  /\  ( B  X.  { 1o } )  ~<  om )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<  om )
1911, 17, 18syl2an 464 . 2  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  (
( A  X.  { (/)
} )  u.  ( B  X.  { 1o }
) )  ~<  om )
205, 19eqbrtrd 4192 1  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  ( A  +c  B )  ~<  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    u. cun 3278   (/)c0 3588   {csn 3774   class class class wbr 4172   Oncon0 4541   omcom 4804    X. cxp 4835  (class class class)co 6040   1oc1o 6676    ~~ cen 7065    ~< csdm 7067    +c ccda 8003
This theorem is referenced by:  canthp1lem2  8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-cda 8004
  Copyright terms: Public domain W3C validator