MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdacomen Unicode version

Theorem cdacomen 8017
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdacomen  |-  ( A  +c  B )  ~~  ( B  +c  A
)

Proof of Theorem cdacomen
StepHypRef Expression
1 1on 6690 . . . . 5  |-  1o  e.  On
2 xpsneng 7152 . . . . 5  |-  ( ( A  e.  _V  /\  1o  e.  On )  -> 
( A  X.  { 1o } )  ~~  A
)
31, 2mpan2 653 . . . 4  |-  ( A  e.  _V  ->  ( A  X.  { 1o }
)  ~~  A )
4 0ex 4299 . . . . 5  |-  (/)  e.  _V
5 xpsneng 7152 . . . . 5  |-  ( ( B  e.  _V  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
64, 5mpan2 653 . . . 4  |-  ( B  e.  _V  ->  ( B  X.  { (/) } ) 
~~  B )
7 ensym 7115 . . . . 5  |-  ( ( A  X.  { 1o } )  ~~  A  ->  A  ~~  ( A  X.  { 1o }
) )
8 ensym 7115 . . . . 5  |-  ( ( B  X.  { (/) } )  ~~  B  ->  B  ~~  ( B  X.  { (/) } ) )
9 incom 3493 . . . . . . 7  |-  ( ( A  X.  { 1o } )  i^i  ( B  X.  { (/) } ) )  =  ( ( B  X.  { (/) } )  i^i  ( A  X.  { 1o }
) )
10 xp01disj 6699 . . . . . . 7  |-  ( ( B  X.  { (/) } )  i^i  ( A  X.  { 1o }
) )  =  (/)
119, 10eqtri 2424 . . . . . 6  |-  ( ( A  X.  { 1o } )  i^i  ( B  X.  { (/) } ) )  =  (/)
12 cdaenun 8010 . . . . . 6  |-  ( ( A  ~~  ( A  X.  { 1o }
)  /\  B  ~~  ( B  X.  { (/) } )  /\  ( ( A  X.  { 1o } )  i^i  ( B  X.  { (/) } ) )  =  (/) )  -> 
( A  +c  B
)  ~~  ( ( A  X.  { 1o }
)  u.  ( B  X.  { (/) } ) ) )
1311, 12mp3an3 1268 . . . . 5  |-  ( ( A  ~~  ( A  X.  { 1o }
)  /\  B  ~~  ( B  X.  { (/) } ) )  ->  ( A  +c  B )  ~~  ( ( A  X.  { 1o } )  u.  ( B  X.  { (/)
} ) ) )
147, 8, 13syl2an 464 . . . 4  |-  ( ( ( A  X.  { 1o } )  ~~  A  /\  ( B  X.  { (/)
} )  ~~  B
)  ->  ( A  +c  B )  ~~  (
( A  X.  { 1o } )  u.  ( B  X.  { (/) } ) ) )
153, 6, 14syl2an 464 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  ~~  ( ( A  X.  { 1o }
)  u.  ( B  X.  { (/) } ) ) )
16 cdaval 8006 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B  +c  A
)  =  ( ( B  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
1716ancoms 440 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B  +c  A
)  =  ( ( B  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
18 uncom 3451 . . . 4  |-  ( ( B  X.  { (/) } )  u.  ( A  X.  { 1o }
) )  =  ( ( A  X.  { 1o } )  u.  ( B  X.  { (/) } ) )
1917, 18syl6eq 2452 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B  +c  A
)  =  ( ( A  X.  { 1o } )  u.  ( B  X.  { (/) } ) ) )
2015, 19breqtrrd 4198 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  ~~  ( B  +c  A ) )
214enref 7099 . . . 4  |-  (/)  ~~  (/)
2221a1i 11 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
(/)  ~~  (/) )
23 cdafn 8005 . . . . 5  |-  +c  Fn  ( _V  X.  _V )
24 fndm 5503 . . . . 5  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
2523, 24ax-mp 8 . . . 4  |-  dom  +c  =  ( _V  X.  _V )
2625ndmov 6190 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  (/) )
27 ancom 438 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( B  e.  _V  /\  A  e.  _V )
)
2825ndmov 6190 . . . 4  |-  ( -.  ( B  e.  _V  /\  A  e.  _V )  ->  ( B  +c  A
)  =  (/) )
2927, 28sylnbi 298 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( B  +c  A
)  =  (/) )
3022, 26, 293brtr4d 4202 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  ~~  ( B  +c  A ) )
3120, 30pm2.61i 158 1  |-  ( A  +c  B )  ~~  ( B  +c  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    u. cun 3278    i^i cin 3279   (/)c0 3588   {csn 3774   class class class wbr 4172   Oncon0 4541    X. cxp 4835   dom cdm 4837    Fn wfn 5408  (class class class)co 6040   1oc1o 6676    ~~ cen 7065    +c ccda 8003
This theorem is referenced by:  cdadom2  8023  cdalepw  8032  infcda  8044  alephadd  8408  gchdomtri  8460  pwxpndom  8497  gchhar  8502  gchpwdom  8505
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-1o 6683  df-er 6864  df-en 7069  df-cda 8004
  Copyright terms: Public domain W3C validator