MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Structured version   Unicode version

Theorem cctop 19273
Description: The countable complement topology on a set  A. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem cctop
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4266 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  C_  U. { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
2 ssrab2 3585 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  C_  ~P A
3 sspwuni 4411 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  ~P A  <->  U. { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  C_  A )
42, 3mpbi 208 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3516 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  C_  A )
6 vex 3116 . . . . . . . . 9  |-  y  e. 
_V
76uniex 6578 . . . . . . . 8  |-  U. y  e.  _V
87elpw 4016 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
95, 8sylibr 212 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  ~P A
)
10 uni0c 4271 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
1110notbii 296 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
12 rexnal 2912 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1311, 12bitr4i 252 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
14 ssel2 3499 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
15 difeq2 3616 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1615breq1d 4457 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
z )  ~<_  om )
)
17 eqeq1 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1816, 17orbi12d 709 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  z )  ~<_  om  \/  z  =  (/) ) ) )
1918elrab 3261 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( z  e.  ~P A  /\  (
( A  \  z
)  ~<_  om  \/  z  =  (/) ) ) )
2014, 19sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  ( ( A 
\  z )  ~<_  om  \/  z  =  (/) ) ) )
2120simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) )
2221ord 377 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A 
\  z )  ~<_  om 
->  z  =  (/) ) )
2322con1d 124 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \ 
z )  ~<_  om )
)
2423imp 429 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \ 
z )  ~<_  om )
25 reldom 7519 . . . . . . . . . . . . . . . 16  |-  Rel  ~<_
2625brrelexi 5039 . . . . . . . . . . . . . . 15  |-  ( ( A  \  z )  ~<_  om  ->  ( A  \  z )  e.  _V )
2726adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  z )  e. 
_V )
28 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  z  e.  y )
29 elssuni 4275 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  z  C_ 
U. y )
30 sscon 3638 . . . . . . . . . . . . . . 15  |-  ( z 
C_  U. y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
3128, 29, 303syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
32 ssdomg 7558 . . . . . . . . . . . . . 14  |-  ( ( A  \  z )  e.  _V  ->  (
( A  \  U. y )  C_  ( A  \  z )  -> 
( A  \  U. y )  ~<_  ( A 
\  z ) ) )
3327, 31, 32sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  ( A  \  z
) )
34 domtr 7565 . . . . . . . . . . . . 13  |-  ( ( ( A  \  U. y )  ~<_  ( A 
\  z )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  om )
3533, 34sylancom 667 . . . . . . . . . . . 12  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  om )
3624, 35mpdan 668 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  ~<_  om )
3736exp31 604 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( z  e.  y  -> 
( -.  z  =  (/)  ->  ( A  \  U. y )  ~<_  om )
) )
3837rexlimdv 2953 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \  U. y )  ~<_  om )
)
3913, 38syl5bi 217 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  ~<_  om )
)
4039con1d 124 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  ~<_  om  ->  U. y  =  (/) ) )
4140orrd 378 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) )
42 difeq2 3616 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
4342breq1d 4457 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  ~<_  om  <->  ( A  \ 
U. y )  ~<_  om ) )
44 eqeq1 2471 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
4543, 44orbi12d 709 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) 
<->  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) ) )
4645elrab 3261 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( U. y  e.  ~P A  /\  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) ) )
479, 41, 46sylanbrc 664 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
4847ax-gen 1601 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
49 ssinss1 3726 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
506elpw 4016 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
516inex1 4588 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
5251elpw 4016 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
5349, 50, 523imtr4i 266 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
5453ad2antrr 725 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
55 difindi 3752 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
56 unctb 8581 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( ( A  \  y )  u.  ( A  \  z
) )  ~<_  om )
5755, 56syl5eqbr 4480 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( A  \  ( y  i^i  z
) )  ~<_  om )
5857orcd 392 . . . . . . . . 9  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
59 ineq1 3693 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
60 incom 3691 . . . . . . . . . . . 12  |-  ( (/)  i^i  z )  =  ( z  i^i  (/) )
61 in0 3811 . . . . . . . . . . . 12  |-  ( z  i^i  (/) )  =  (/)
6260, 61eqtri 2496 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
6359, 62syl6eq 2524 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
6463olcd 393 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
65 ineq2 3694 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
66 in0 3811 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6765, 66syl6eq 2524 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6867olcd 393 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
6958, 64, 68ccase2 946 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  ~<_  om  \/  y  =  (/) )  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
7069ad2ant2l 745 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
7154, 70jca 532 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  ~<_  om  \/  (
y  i^i  z )  =  (/) ) ) )
72 difeq2 3616 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
7372breq1d 4457 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
y )  ~<_  om )
)
74 eqeq1 2471 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
7573, 74orbi12d 709 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  y )  ~<_  om  \/  y  =  (/) ) ) )
7675elrab 3261 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( y  e.  ~P A  /\  (
( A  \  y
)  ~<_  om  \/  y  =  (/) ) ) )
7776, 19anbi12i 697 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  <-> 
( ( y  e. 
~P A  /\  (
( A  \  y
)  ~<_  om  \/  y  =  (/) ) )  /\  ( z  e.  ~P A  /\  ( ( A 
\  z )  ~<_  om  \/  z  =  (/) ) ) ) )
78 difeq2 3616 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7978breq1d 4457 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
( y  i^i  z
) )  ~<_  om )
)
80 eqeq1 2471 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
8179, 80orbi12d 709 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) ) )
8281elrab 3261 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  ~<_  om  \/  (
y  i^i  z )  =  (/) ) ) )
8371, 77, 823imtr4i 266 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  ->  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } )
8483rgen2a 2891 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } A. z  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }
8548, 84pm3.2i 455 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )
86 pwexg 4631 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
87 rabexg 4597 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  _V )
88 istopg 19171 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  Top 
<->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } A. z  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } ) ) )
8986, 87, 883syl 20 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } ) ) )
9085, 89mpbiri 233 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  Top )
91 pwidg 4023 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
92 omex 8056 . . . . . . . 8  |-  om  e.  _V
93920dom 7644 . . . . . . 7  |-  (/)  ~<_  om
9493orci 390 . . . . . 6  |-  ( (/)  ~<_  om  \/  A  =  (/) )
9594a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( (/)  ~<_  om  \/  A  =  (/) ) )
96 difeq2 3616 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
97 difid 3895 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9896, 97syl6eq 2524 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9998breq1d 4457 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  ~<_  om  <->  (/)  ~<_  om ) )
100 eqeq1 2471 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
10199, 100orbi12d 709 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( (/)  ~<_  om  \/  A  =  (/) ) ) )
102101elrab 3261 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( A  e.  ~P A  /\  ( (/)  ~<_  om  \/  A  =  (/) ) ) )
10391, 95, 102sylanbrc 664 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )
104 elssuni 4275 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  A 
C_  U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
105103, 104syl 16 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
1064a1i 11 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  A )
107105, 106eqssd 3521 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
108 istopon 19193 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } ) )
10990, 107, 108sylanbrc 664 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245   class class class wbr 4447   ` cfv 5586   omcom 6678    ~<_ cdom 7511   Topctop 19161  TopOnctopon 19162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-oi 7931  df-card 8316  df-cda 8544  df-top 19166  df-topon 19169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator