MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatval3 Structured version   Unicode version

Theorem ccatval3 12589
Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
Assertion
Ref Expression
ccatval3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( S ++  T ) `  (
I  +  ( # `  S ) ) )  =  ( T `  I ) )

Proof of Theorem ccatval3
StepHypRef Expression
1 lencl 12552 . . . . . . . 8  |-  ( S  e. Word  B  ->  ( # `
 S )  e. 
NN0 )
21nn0zd 10963 . . . . . . 7  |-  ( S  e. Word  B  ->  ( # `
 S )  e.  ZZ )
32anim1i 566 . . . . . 6  |-  ( ( S  e. Word  B  /\  I  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( # `  S
)  e.  ZZ  /\  I  e.  ( 0..^ ( # `  T
) ) ) )
43ancomd 449 . . . . 5  |-  ( ( S  e. Word  B  /\  I  e.  ( 0..^ ( # `  T
) ) )  -> 
( I  e.  ( 0..^ ( # `  T
) )  /\  ( # `
 S )  e.  ZZ ) )
543adant2 1013 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( I  e.  ( 0..^ ( # `  T ) )  /\  ( # `  S )  e.  ZZ ) )
6 fzo0addelr 11852 . . . 4  |-  ( ( I  e.  ( 0..^ ( # `  T
) )  /\  ( # `
 S )  e.  ZZ )  ->  (
I  +  ( # `  S ) )  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) ) )
75, 6syl 16 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( I  +  ( # `  S ) )  e.  ( (
# `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )
8 ccatval2 12588 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  (
I  +  ( # `  S ) )  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) ) )  -> 
( ( S ++  T
) `  ( I  +  ( # `  S
) ) )  =  ( T `  (
( I  +  (
# `  S )
)  -  ( # `  S ) ) ) )
97, 8syld3an3 1271 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( S ++  T ) `  (
I  +  ( # `  S ) ) )  =  ( T `  ( ( I  +  ( # `  S ) )  -  ( # `  S ) ) ) )
10 elfzoelz 11804 . . . . . 6  |-  ( I  e.  ( 0..^ (
# `  T )
)  ->  I  e.  ZZ )
11103ad2ant3 1017 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  I  e.  ZZ )
1211zcnd 10966 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  I  e.  CC )
1313ad2ant1 1015 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( # `  S
)  e.  NN0 )
1413nn0cnd 10850 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( # `  S
)  e.  CC )
1512, 14pncand 9923 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( I  +  ( # `  S
) )  -  ( # `
 S ) )  =  I )
1615fveq2d 5852 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( T `  ( ( I  +  ( # `  S ) )  -  ( # `  S ) ) )  =  ( T `  I ) )
179, 16eqtrd 2495 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  I  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( S ++  T ) `  (
I  +  ( # `  S ) ) )  =  ( T `  I ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   ` cfv 5570  (class class class)co 6270   0cc0 9481    + caddc 9484    - cmin 9796   NN0cn0 10791   ZZcz 10860  ..^cfzo 11799   #chash 12390  Word cword 12521   ++ cconcat 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-hash 12391  df-word 12529  df-concat 12531
This theorem is referenced by:  ccatrn  12598  swrdccat2  12677  cats1un  12695  splfv2a  12726  revccat  12734  cats1fvn  12817  gsumccat  16211  efgsval2  16953  efgsp1  16957  pgpfaclem1  17330  signstfvn  28793
  Copyright terms: Public domain W3C validator