MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatswrd Structured version   Unicode version

Theorem ccatswrd 12675
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
Assertion
Ref Expression
ccatswrd  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  =  ( S substr  <. X ,  Z >. ) )

Proof of Theorem ccatswrd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 swrdcl 12638 . . . . . 6  |-  ( S  e. Word  A  ->  ( S substr  <. X ,  Y >. )  e. Word  A )
21adantr 463 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Y >. )  e. Word  A
)
3 swrdcl 12638 . . . . . 6  |-  ( S  e. Word  A  ->  ( S substr  <. Y ,  Z >. )  e. Word  A )
43adantr 463 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. Y ,  Z >. )  e. Word  A
)
5 ccatcl 12585 . . . . 5  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A
)  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  e. Word  A )
62, 4, 5syl2anc 659 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  e. Word  A )
7 wrdf 12541 . . . 4  |-  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  e. Word  A  -> 
( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) : ( 0..^ ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) --> A )
8 ffn 5713 . . . 4  |-  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) : ( 0..^ ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) --> A  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( # `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) )
96, 7, 83syl 20 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( # `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) ) )
10 ccatlen 12586 . . . . . . 7  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A
)  ->  ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) )  =  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  (
# `  ( S substr  <. Y ,  Z >. ) ) ) )
112, 4, 10syl2anc 659 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) )  =  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  (
# `  ( S substr  <. Y ,  Z >. ) ) ) )
12 simpl 455 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  S  e. Word  A
)
13 simpr1 1000 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  ( 0 ... Y ) )
14 simpr2 1001 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  ( 0 ... Z ) )
15 simpr3 1002 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Z  e.  ( 0 ... ( # `  S ) ) )
16 fzass4 11725 . . . . . . . . . . . 12  |-  ( ( Y  e.  ( 0 ... ( # `  S
) )  /\  Z  e.  ( Y ... ( # `
 S ) ) )  <->  ( Y  e.  ( 0 ... Z
)  /\  Z  e.  ( 0 ... ( # `
 S ) ) ) )
1716biimpri 206 . . . . . . . . . . 11  |-  ( ( Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  -> 
( Y  e.  ( 0 ... ( # `  S ) )  /\  Z  e.  ( Y ... ( # `  S
) ) ) )
1817simpld 457 . . . . . . . . . 10  |-  ( ( Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  ->  Y  e.  ( 0 ... ( # `  S
) ) )
1914, 15, 18syl2anc 659 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  ( 0 ... ( # `  S ) ) )
20 swrdlen 12642 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. X ,  Y >. ) )  =  ( Y  -  X ) )
2112, 13, 19, 20syl3anc 1226 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  ( S substr  <. X ,  Y >. ) )  =  ( Y  -  X ) )
22 swrdlen 12642 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. Y ,  Z >. ) )  =  ( Z  -  Y ) )
2312, 14, 15, 22syl3anc 1226 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  ( S substr  <. Y ,  Z >. ) )  =  ( Z  -  Y ) )
2421, 23oveq12d 6288 . . . . . . 7  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) )  =  ( ( Y  -  X )  +  ( Z  -  Y ) ) )
25 elfzelz 11691 . . . . . . . . . 10  |-  ( Y  e.  ( 0 ... Z )  ->  Y  e.  ZZ )
2614, 25syl 16 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  ZZ )
2726zcnd 10966 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Y  e.  CC )
28 elfzelz 11691 . . . . . . . . . 10  |-  ( X  e.  ( 0 ... Y )  ->  X  e.  ZZ )
2913, 28syl 16 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  ZZ )
3029zcnd 10966 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  CC )
31 elfzelz 11691 . . . . . . . . . 10  |-  ( Z  e.  ( 0 ... ( # `  S
) )  ->  Z  e.  ZZ )
3215, 31syl 16 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Z  e.  ZZ )
3332zcnd 10966 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  Z  e.  CC )
3427, 30, 33npncan3d 9958 . . . . . . 7  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( Y  -  X )  +  ( Z  -  Y
) )  =  ( Z  -  X ) )
3524, 34eqtrd 2495 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( # `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) )  =  ( Z  -  X
) )
3611, 35eqtrd 2495 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) )  =  ( Z  -  X ) )
3736oveq2d 6286 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( 0..^ (
# `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) )  =  ( 0..^ ( Z  -  X
) ) )
3837fneq2d 5654 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( # `  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) ) )  <->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( Z  -  X ) ) ) )
399, 38mpbid 210 . 2  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  Fn  ( 0..^ ( Z  -  X ) ) )
40 swrdcl 12638 . . . . 5  |-  ( S  e. Word  A  ->  ( S substr  <. X ,  Z >. )  e. Word  A )
4140adantr 463 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Z >. )  e. Word  A
)
42 wrdf 12541 . . . 4  |-  ( ( S substr  <. X ,  Z >. )  e. Word  A  -> 
( S substr  <. X ,  Z >. ) : ( 0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) --> A )
43 ffn 5713 . . . 4  |-  ( ( S substr  <. X ,  Z >. ) : ( 0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) --> A  ->  ( S substr  <. X ,  Z >. )  Fn  (
0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) )
4441, 42, 433syl 20 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Z >. )  Fn  (
0..^ ( # `  ( S substr  <. X ,  Z >. ) ) ) )
45 fzass4 11725 . . . . . . . . 9  |-  ( ( X  e.  ( 0 ... Z )  /\  Y  e.  ( X ... Z ) )  <->  ( X  e.  ( 0 ... Y
)  /\  Y  e.  ( 0 ... Z
) ) )
4645biimpri 206 . . . . . . . 8  |-  ( ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z ) )  ->  ( X  e.  ( 0 ... Z
)  /\  Y  e.  ( X ... Z ) ) )
4746simpld 457 . . . . . . 7  |-  ( ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z ) )  ->  X  e.  ( 0 ... Z ) )
4813, 14, 47syl2anc 659 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  X  e.  ( 0 ... Z ) )
49 swrdlen 12642 . . . . . 6  |-  ( ( S  e. Word  A  /\  X  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. X ,  Z >. ) )  =  ( Z  -  X ) )
5012, 48, 15, 49syl3anc 1226 . . . . 5  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( # `  ( S substr  <. X ,  Z >. ) )  =  ( Z  -  X ) )
5150oveq2d 6286 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( 0..^ (
# `  ( S substr  <. X ,  Z >. ) ) )  =  ( 0..^ ( Z  -  X ) ) )
5251fneq2d 5654 . . 3  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Z >. )  Fn  ( 0..^ (
# `  ( S substr  <. X ,  Z >. ) ) )  <->  ( S substr  <. X ,  Z >. )  Fn  ( 0..^ ( Z  -  X ) ) ) )
5344, 52mpbid 210 . 2  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( S substr  <. X ,  Z >. )  Fn  (
0..^ ( Z  -  X ) ) )
54 simpr 459 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  x  e.  ( 0..^ ( Z  -  X ) ) )
5526, 29zsubcld 10970 . . . . . 6  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Y  -  X )  e.  ZZ )
5655adantr 463 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( Y  -  X )  e.  ZZ )
57 fzospliti 11834 . . . . 5  |-  ( ( x  e.  ( 0..^ ( Z  -  X
) )  /\  ( Y  -  X )  e.  ZZ )  ->  (
x  e.  ( 0..^ ( Y  -  X
) )  \/  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) ) )
5854, 56, 57syl2anc 659 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( x  e.  ( 0..^ ( Y  -  X ) )  \/  x  e.  ( ( Y  -  X
)..^ ( Z  -  X ) ) ) )
592adantr 463 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( S substr  <. X ,  Y >. )  e. Word  A )
604adantr 463 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( S substr  <. Y ,  Z >. )  e. Word  A )
6121oveq2d 6286 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( 0..^ (
# `  ( S substr  <. X ,  Y >. ) ) )  =  ( 0..^ ( Y  -  X ) ) )
6261eleq2d 2524 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  e.  ( 0..^ ( # `  ( S substr  <. X ,  Y >. ) ) )  <-> 
x  e.  ( 0..^ ( Y  -  X
) ) ) )
6362biimpar 483 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  x  e.  ( 0..^ ( # `  ( S substr  <. X ,  Y >. ) ) ) )
64 ccatval1 12587 . . . . . . 7  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A  /\  x  e.  (
0..^ ( # `  ( S substr  <. X ,  Y >. ) ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. X ,  Y >. ) `  x
) )
6559, 60, 63, 64syl3anc 1226 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. X ,  Y >. ) `
 x ) )
66 simpll 751 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  S  e. Word  A )
67 simplr1 1036 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  X  e.  ( 0 ... Y
) )
6819adantr 463 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  Y  e.  ( 0 ... ( # `
 S ) ) )
69 simpr 459 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  x  e.  ( 0..^ ( Y  -  X ) ) )
70 swrdfv 12643 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... ( # `  S
) ) )  /\  x  e.  ( 0..^ ( Y  -  X
) ) )  -> 
( ( S substr  <. X ,  Y >. ) `  x
)  =  ( S `
 ( x  +  X ) ) )
7166, 67, 68, 69, 70syl31anc 1229 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( ( S substr  <. X ,  Y >. ) `  x )  =  ( S `  ( x  +  X
) ) )
7265, 71eqtrd 2495 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Y  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X
) ) )
732adantr 463 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( S substr  <. X ,  Y >. )  e. Word  A
)
744adantr 463 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( S substr  <. Y ,  Z >. )  e. Word  A
)
7521, 35oveq12d 6288 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( # `  ( S substr  <. X ,  Y >. ) )..^ ( ( # `  ( S substr  <. X ,  Y >. ) )  +  (
# `  ( S substr  <. Y ,  Z >. ) ) ) )  =  ( ( Y  -  X )..^ ( Z  -  X ) ) )
7675eleq2d 2524 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  e.  ( ( # `  ( S substr  <. X ,  Y >. ) )..^ ( (
# `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) ) )  <->  x  e.  (
( Y  -  X
)..^ ( Z  -  X ) ) ) )
7776biimpar 483 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  x  e.  ( ( # `  ( S substr  <. X ,  Y >. ) )..^ ( (
# `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) ) ) )
78 ccatval2 12588 . . . . . . 7  |-  ( ( ( S substr  <. X ,  Y >. )  e. Word  A  /\  ( S substr  <. Y ,  Z >. )  e. Word  A  /\  x  e.  (
( # `  ( S substr  <. X ,  Y >. ) )..^ ( ( # `  ( S substr  <. X ,  Y >. ) )  +  ( # `  ( S substr  <. Y ,  Z >. ) ) ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. Y ,  Z >. ) `
 ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) ) )
7973, 74, 77, 78syl3anc 1226 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. Y ,  Z >. ) `  (
x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) ) )
80 simpll 751 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  S  e. Word  A
)
81 simplr2 1037 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  Y  e.  ( 0 ... Z ) )
82 simplr3 1038 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  Z  e.  ( 0 ... ( # `  S ) ) )
8321oveq2d 6286 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  =  ( x  -  ( Y  -  X ) ) )
8483adantr 463 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  =  ( x  -  ( Y  -  X ) ) )
8534oveq2d 6286 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( Y  -  X )..^ ( ( Y  -  X
)  +  ( Z  -  Y ) ) )  =  ( ( Y  -  X )..^ ( Z  -  X
) ) )
8685eleq2d 2524 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  e.  ( ( Y  -  X )..^ ( ( Y  -  X )  +  ( Z  -  Y
) ) )  <->  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) ) )
8786biimpar 483 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  x  e.  ( ( Y  -  X
)..^ ( ( Y  -  X )  +  ( Z  -  Y
) ) ) )
8832, 26zsubcld 10970 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Z  -  Y )  e.  ZZ )
8988adantr 463 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( Z  -  Y )  e.  ZZ )
90 fzosubel3 11858 . . . . . . . . 9  |-  ( ( x  e.  ( ( Y  -  X )..^ ( ( Y  -  X )  +  ( Z  -  Y ) ) )  /\  ( Z  -  Y )  e.  ZZ )  ->  (
x  -  ( Y  -  X ) )  e.  ( 0..^ ( Z  -  Y ) ) )
9187, 89, 90syl2anc 659 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  -  ( Y  -  X
) )  e.  ( 0..^ ( Z  -  Y ) ) )
9284, 91eqeltrd 2542 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  e.  ( 0..^ ( Z  -  Y ) ) )
93 swrdfv 12643 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  Y  e.  (
0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  /\  ( x  -  ( # `
 ( S substr  <. X ,  Y >. ) ) )  e.  ( 0..^ ( Z  -  Y ) ) )  ->  (
( S substr  <. Y ,  Z >. ) `  (
x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) )  =  ( S `
 ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y ) ) )
9480, 81, 82, 92, 93syl31anc 1229 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( S substr  <. Y ,  Z >. ) `
 ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) ) )  =  ( S `  (
( x  -  ( # `
 ( S substr  <. X ,  Y >. ) ) )  +  Y ) ) )
9583oveq1d 6285 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y )  =  ( ( x  -  ( Y  -  X )
)  +  Y ) )
9695adantr 463 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y )  =  ( ( x  -  ( Y  -  X )
)  +  Y ) )
97 elfzoelz 11804 . . . . . . . . . . 11  |-  ( x  e.  ( ( Y  -  X )..^ ( Z  -  X ) )  ->  x  e.  ZZ )
9897zcnd 10966 . . . . . . . . . 10  |-  ( x  e.  ( ( Y  -  X )..^ ( Z  -  X ) )  ->  x  e.  CC )
9998adantl 464 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  x  e.  CC )
10027, 30subcld 9922 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Y  -  X )  e.  CC )
101100adantr 463 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( Y  -  X )  e.  CC )
10227adantr 463 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  Y  e.  CC )
10399, 101, 102subadd23d 9944 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( x  -  ( Y  -  X ) )  +  Y )  =  ( x  +  ( Y  -  ( Y  -  X ) ) ) )
10427, 30nncand 9927 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( Y  -  ( Y  -  X
) )  =  X )
105104oveq2d 6286 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( x  +  ( Y  -  ( Y  -  X )
) )  =  ( x  +  X ) )
106105adantr 463 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( x  +  ( Y  -  ( Y  -  X )
) )  =  ( x  +  X ) )
10796, 103, 1063eqtrd 2499 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y )  =  ( x  +  X ) )
108107fveq2d 5852 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( S `  ( ( x  -  ( # `  ( S substr  <. X ,  Y >. ) ) )  +  Y
) )  =  ( S `  ( x  +  X ) ) )
10979, 94, 1083eqtrd 2499 . . . . 5  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) )  ->  ( ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X ) ) )
11072, 109jaodan 783 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  ( x  e.  ( 0..^ ( Y  -  X ) )  \/  x  e.  ( ( Y  -  X )..^ ( Z  -  X ) ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X
) ) )
11158, 110syldan 468 . . 3  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( S `  ( x  +  X
) ) )
112 simpll 751 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  S  e. Word  A )
11348adantr 463 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  X  e.  ( 0 ... Z
) )
114 simplr3 1038 . . . 4  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  Z  e.  ( 0 ... ( # `
 S ) ) )
115 swrdfv 12643 . . . 4  |-  ( ( ( S  e. Word  A  /\  X  e.  (
0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) )  /\  x  e.  ( 0..^ ( Z  -  X
) ) )  -> 
( ( S substr  <. X ,  Z >. ) `  x
)  =  ( S `
 ( x  +  X ) ) )
116112, 113, 114, 54, 115syl31anc 1229 . . 3  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( ( S substr  <. X ,  Z >. ) `  x )  =  ( S `  ( x  +  X
) ) )
117111, 116eqtr4d 2498 . 2  |-  ( ( ( S  e. Word  A  /\  ( X  e.  ( 0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S ) ) ) )  /\  x  e.  ( 0..^ ( Z  -  X ) ) )  ->  ( (
( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) ) `  x )  =  ( ( S substr  <. X ,  Z >. ) `
 x ) )
11839, 53, 117eqfnfvd 5960 1  |-  ( ( S  e. Word  A  /\  ( X  e.  (
0 ... Y )  /\  Y  e.  ( 0 ... Z )  /\  Z  e.  ( 0 ... ( # `  S
) ) ) )  ->  ( ( S substr  <. X ,  Y >. ) ++  ( S substr  <. Y ,  Z >. ) )  =  ( S substr  <. X ,  Z >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   <.cop 4022    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   0cc0 9481    + caddc 9484    - cmin 9796   ZZcz 10860   ...cfz 11675  ..^cfzo 11799   #chash 12390  Word cword 12521   ++ cconcat 12523   substr csubstr 12525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-hash 12391  df-word 12529  df-concat 12531  df-substr 12533
This theorem is referenced by:  wrdcctswrd  12684  swrdccatwrd  12687  wrdeqcats1OLD  12693  wrdeqs1cat  12694  splid  12723  splval2  12727  swrds2  12877  efgredleme  16963  efgredlemc  16965  efgcpbllemb  16975  frgpuplem  16992  wrdsplex  28762
  Copyright terms: Public domain W3C validator