MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth Structured version   Unicode version

Theorem ccatopth 12364
Description: An opth 4566-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
ccatopth  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 6098 . . . 4  |-  ( ( A concat  B )  =  ( C concat  D )  ->  ( ( A concat  B ) substr  <. 0 ,  ( # `  A
) >. )  =  ( ( C concat  D ) substr  <. 0 ,  ( # `  A ) >. )
)
2 swrdccat1 12351 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A concat  B
) substr  <. 0 ,  (
# `  A ) >. )  =  A )
323ad2ant1 1009 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
) substr  <. 0 ,  (
# `  A ) >. )  =  A )
4 simp3 990 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( # `  A )  =  ( # `  C
) )
54opeq2d 4066 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  ->  <. 0 ,  ( # `  A ) >.  =  <. 0 ,  ( # `  C
) >. )
65oveq2d 6107 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( C concat  D
) substr  <. 0 ,  (
# `  A ) >. )  =  ( ( C concat  D ) substr  <. 0 ,  ( # `  C
) >. ) )
7 swrdccat1 12351 . . . . . . 7  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C concat  D
) substr  <. 0 ,  (
# `  C ) >. )  =  C )
873ad2ant2 1010 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( C concat  D
) substr  <. 0 ,  (
# `  C ) >. )  =  C )
96, 8eqtrd 2475 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( C concat  D
) substr  <. 0 ,  (
# `  A ) >. )  =  C )
103, 9eqeq12d 2457 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( ( A concat  B ) substr  <. 0 ,  ( # `  A
) >. )  =  ( ( C concat  D ) substr  <. 0 ,  ( # `  A ) >. )  <->  A  =  C ) )
111, 10syl5ib 219 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  ->  A  =  C ) )
12 simpr 461 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( A concat  B
)  =  ( C concat  D ) )
13 simpl3 993 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  A
)  =  ( # `  C ) )
1412fveq2d 5695 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  ( A concat  B ) )  =  ( # `  ( C concat  D ) ) )
15 simpl1 991 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( A  e. Word  X  /\  B  e. Word  X
) )
16 ccatlen 12275 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( # `  ( A concat  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
1715, 16syl 16 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  ( A concat  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
18 simpl2 992 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( C  e. Word  X  /\  D  e. Word  X
) )
19 ccatlen 12275 . . . . . . . . 9  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( # `  ( C concat  D ) )  =  ( ( # `  C
)  +  ( # `  D ) ) )
2018, 19syl 16 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  ( C concat  D ) )  =  ( ( # `  C
)  +  ( # `  D ) ) )
2114, 17, 203eqtr3d 2483 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( # `  A )  +  (
# `  B )
)  =  ( (
# `  C )  +  ( # `  D
) ) )
2213, 21opeq12d 4067 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  <. ( # `  A
) ,  ( (
# `  A )  +  ( # `  B
) ) >.  =  <. (
# `  C ) ,  ( ( # `  C )  +  (
# `  D )
) >. )
2312, 22oveq12d 6109 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( A concat  B ) substr  <. ( # `  A ) ,  ( ( # `  A
)  +  ( # `  B ) ) >.
)  =  ( ( C concat  D ) substr  <. (
# `  C ) ,  ( ( # `  C )  +  (
# `  D )
) >. ) )
24 swrdccat2 12352 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A concat  B
) substr  <. ( # `  A
) ,  ( (
# `  A )  +  ( # `  B
) ) >. )  =  B )
2515, 24syl 16 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( A concat  B ) substr  <. ( # `  A ) ,  ( ( # `  A
)  +  ( # `  B ) ) >.
)  =  B )
26 swrdccat2 12352 . . . . . 6  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C concat  D
) substr  <. ( # `  C
) ,  ( (
# `  C )  +  ( # `  D
) ) >. )  =  D )
2718, 26syl 16 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( C concat  D ) substr  <. ( # `  C ) ,  ( ( # `  C
)  +  ( # `  D ) ) >.
)  =  D )
2823, 25, 273eqtr3d 2483 . . . 4  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  B  =  D )
2928ex 434 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  ->  B  =  D ) )
3011, 29jcad 533 . 2  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  ->  ( A  =  C  /\  B  =  D )
) )
31 oveq12 6100 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A concat  B )  =  ( C concat  D
) )
3230, 31impbid1 203 1  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   <.cop 3883   ` cfv 5418  (class class class)co 6091   0cc0 9282    + caddc 9285   #chash 12103  Word cword 12221   concat cconcat 12223   substr csubstr 12225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-fzo 11549  df-hash 12104  df-word 12229  df-concat 12231  df-substr 12233
This theorem is referenced by:  ccatopth2  12365  ccatlcan  12366  splval2  12399  s2eq2s1eq  12543  efgredleme  16240  efgredlemc  16242
  Copyright terms: Public domain W3C validator