MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Structured version   Unicode version

Theorem ccatfval 12553
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
Distinct variable groups:    x, S    x, T    x, V    x, W

Proof of Theorem ccatfval
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3122 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 3122 . 2  |-  ( T  e.  W  ->  T  e.  _V )
3 fveq2 5864 . . . . . 6  |-  ( s  =  S  ->  ( # `
 s )  =  ( # `  S
) )
4 fveq2 5864 . . . . . 6  |-  ( t  =  T  ->  ( # `
 t )  =  ( # `  T
) )
53, 4oveqan12d 6301 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( # `  s
)  +  ( # `  t ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
65oveq2d 6298 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  ( 0..^ ( (
# `  s )  +  ( # `  t
) ) )  =  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) ) )
73oveq2d 6298 . . . . . . 7  |-  ( s  =  S  ->  (
0..^ ( # `  s
) )  =  ( 0..^ ( # `  S
) ) )
87eleq2d 2537 . . . . . 6  |-  ( s  =  S  ->  (
x  e.  ( 0..^ ( # `  s
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
98adantr 465 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  e.  ( 0..^ ( # `  s
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
10 fveq1 5863 . . . . . 6  |-  ( s  =  S  ->  (
s `  x )  =  ( S `  x ) )
1110adantr 465 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s `  x
)  =  ( S `
 x ) )
12 simpr 461 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  t  =  T )
133oveq2d 6298 . . . . . . 7  |-  ( s  =  S  ->  (
x  -  ( # `  s ) )  =  ( x  -  ( # `
 S ) ) )
1413adantr 465 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  -  ( # `
 s ) )  =  ( x  -  ( # `  S ) ) )
1512, 14fveq12d 5870 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( t `  (
x  -  ( # `  s ) ) )  =  ( T `  ( x  -  ( # `
 S ) ) ) )
169, 11, 15ifbieq12d 3966 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( # `  S ) ) ) ) )
176, 16mpteq12dv 4525 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  e.  ( 0..^ ( ( # `  s )  +  (
# `  t )
) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) )  =  ( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
18 df-concat 12506 . . 3  |- concat  =  ( s  e.  _V , 
t  e.  _V  |->  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) ) )
19 ovex 6307 . . . 4  |-  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) )  e.  _V
2019mptex 6129 . . 3  |-  ( x  e.  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( # `  S ) ) ) ) )  e.  _V
2117, 18, 20ovmpt2a 6415 . 2  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
221, 2, 21syl2an 477 1  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   ifcif 3939    |-> cmpt 4505   ` cfv 5586  (class class class)co 6282   0cc0 9488    + caddc 9491    - cmin 9801  ..^cfzo 11788   #chash 12369   concat cconcat 12498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-concat 12506
This theorem is referenced by:  ccatcl  12554  ccatlen  12555  ccatval1  12556  ccatval2  12557  ccatvalfn  12560  repswccat  12716  ccatco  12760  ccatmulgnn0dir  28136  ofccat  28137
  Copyright terms: Public domain W3C validator