MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatco Structured version   Unicode version

Theorem ccatco 12565
Description: Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
ccatco  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( F  o.  ( S concat  T ) )  =  ( ( F  o.  S ) concat  ( F  o.  T ) ) )

Proof of Theorem ccatco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lenco 12562 . . . . . . 7  |-  ( ( S  e. Word  A  /\  F : A --> B )  ->  ( # `  ( F  o.  S )
)  =  ( # `  S ) )
213adant2 1007 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( # `  ( F  o.  S ) )  =  ( # `  S
) )
3 lenco 12562 . . . . . . 7  |-  ( ( T  e. Word  A  /\  F : A --> B )  ->  ( # `  ( F  o.  T )
)  =  ( # `  T ) )
433adant1 1006 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( # `  ( F  o.  T ) )  =  ( # `  T
) )
52, 4oveq12d 6208 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( ( # `  ( F  o.  S )
)  +  ( # `  ( F  o.  T
) ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
65oveq2d 6206 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( 0..^ ( (
# `  ( F  o.  S ) )  +  ( # `  ( F  o.  T )
) ) )  =  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) ) )
76mpteq1d 4471 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( x  e.  ( 0..^ ( ( # `  ( F  o.  S
) )  +  (
# `  ( F  o.  T ) ) ) )  |->  if ( x  e.  ( 0..^ (
# `  ( F  o.  S ) ) ) ,  ( ( F  o.  S ) `  x ) ,  ( ( F  o.  T
) `  ( x  -  ( # `  ( F  o.  S )
) ) ) ) )  =  ( x  e.  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  ( F  o.  S
) ) ) ,  ( ( F  o.  S ) `  x
) ,  ( ( F  o.  T ) `
 ( x  -  ( # `  ( F  o.  S ) ) ) ) ) ) )
82oveq2d 6206 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( 0..^ ( # `  ( F  o.  S
) ) )  =  ( 0..^ ( # `  S ) ) )
98adantr 465 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  -> 
( 0..^ ( # `  ( F  o.  S
) ) )  =  ( 0..^ ( # `  S ) ) )
109eleq2d 2521 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  -> 
( x  e.  ( 0..^ ( # `  ( F  o.  S )
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
1110ifbid 3909 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  ->  if ( x  e.  ( 0..^ ( # `  ( F  o.  S )
) ) ,  ( ( F  o.  S
) `  x ) ,  ( ( F  o.  T ) `  ( x  -  ( # `
 ( F  o.  S ) ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( ( F  o.  S
) `  x ) ,  ( ( F  o.  T ) `  ( x  -  ( # `
 ( F  o.  S ) ) ) ) ) )
12 eqeq1 2455 . . . . . 6  |-  ( ( ( F  o.  S
) `  x )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( ( F  o.  S ) `  x
) ,  ( ( F  o.  T ) `
 ( x  -  ( # `  ( F  o.  S ) ) ) ) )  -> 
( ( ( F  o.  S ) `  x )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )  <->  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( ( F  o.  S ) `  x
) ,  ( ( F  o.  T ) `
 ( x  -  ( # `  ( F  o.  S ) ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( F `  ( S `  x )
) ,  ( F `
 ( T `  ( x  -  ( # `
 S ) ) ) ) ) ) )
13 eqeq1 2455 . . . . . 6  |-  ( ( ( F  o.  T
) `  ( x  -  ( # `  ( F  o.  S )
) ) )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( ( F  o.  S ) `  x
) ,  ( ( F  o.  T ) `
 ( x  -  ( # `  ( F  o.  S ) ) ) ) )  -> 
( ( ( F  o.  T ) `  ( x  -  ( # `
 ( F  o.  S ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )  <->  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( ( F  o.  S ) `  x
) ,  ( ( F  o.  T ) `
 ( x  -  ( # `  ( F  o.  S ) ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( F `  ( S `  x )
) ,  ( F `
 ( T `  ( x  -  ( # `
 S ) ) ) ) ) ) )
14 wrdf 12342 . . . . . . . . . . 11  |-  ( S  e. Word  A  ->  S : ( 0..^ (
# `  S )
) --> A )
15143ad2ant1 1009 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  S : ( 0..^ (
# `  S )
) --> A )
1615adantr 465 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  ->  S : ( 0..^ (
# `  S )
) --> A )
17 ffn 5657 . . . . . . . . 9  |-  ( S : ( 0..^ (
# `  S )
) --> A  ->  S  Fn  ( 0..^ ( # `  S ) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  ->  S  Fn  ( 0..^ ( # `  S
) ) )
19 fvco2 5865 . . . . . . . 8  |-  ( ( S  Fn  ( 0..^ ( # `  S
) )  /\  x  e.  ( 0..^ ( # `  S ) ) )  ->  ( ( F  o.  S ) `  x )  =  ( F `  ( S `
 x ) ) )
2018, 19sylan 471 . . . . . . 7  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  x  e.  ( 0..^ ( # `  S
) ) )  -> 
( ( F  o.  S ) `  x
)  =  ( F `
 ( S `  x ) ) )
21 iftrue 3895 . . . . . . . 8  |-  ( x  e.  ( 0..^ (
# `  S )
)  ->  if (
x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )  =  ( F `
 ( S `  x ) ) )
2221adantl 466 . . . . . . 7  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  x  e.  ( 0..^ ( # `  S
) ) )  ->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )  =  ( F `
 ( S `  x ) ) )
2320, 22eqtr4d 2495 . . . . . 6  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  x  e.  ( 0..^ ( # `  S
) ) )  -> 
( ( F  o.  S ) `  x
)  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) )
24 wrdf 12342 . . . . . . . . . . 11  |-  ( T  e. Word  A  ->  T : ( 0..^ (
# `  T )
) --> A )
25243ad2ant2 1010 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  T : ( 0..^ (
# `  T )
) --> A )
2625ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  ->  T : ( 0..^ (
# `  T )
) --> A )
27 ffn 5657 . . . . . . . . 9  |-  ( T : ( 0..^ (
# `  T )
) --> A  ->  T  Fn  ( 0..^ ( # `  T ) ) )
2826, 27syl 16 . . . . . . . 8  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  ->  T  Fn  ( 0..^ ( # `  T
) ) )
29 lencl 12351 . . . . . . . . . . . . 13  |-  ( S  e. Word  A  ->  ( # `
 S )  e. 
NN0 )
3029nn0zd 10846 . . . . . . . . . . . 12  |-  ( S  e. Word  A  ->  ( # `
 S )  e.  ZZ )
31303ad2ant1 1009 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( # `  S )  e.  ZZ )
32 fzospliti 11682 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) )  /\  ( # `  S
)  e.  ZZ )  ->  ( x  e.  ( 0..^ ( # `  S ) )  \/  x  e.  ( (
# `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) ) )
3332ancoms 453 . . . . . . . . . . 11  |-  ( ( ( # `  S
)  e.  ZZ  /\  x  e.  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( x  e.  ( 0..^ ( # `  S ) )  \/  x  e.  ( (
# `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) ) )
3431, 33sylan 471 . . . . . . . . . 10  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  -> 
( x  e.  ( 0..^ ( # `  S
) )  \/  x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) ) ) )
3534orcanai 904 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  ->  x  e.  ( ( # `
 S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )
36 lencl 12351 . . . . . . . . . . . 12  |-  ( T  e. Word  A  ->  ( # `
 T )  e. 
NN0 )
3736nn0zd 10846 . . . . . . . . . . 11  |-  ( T  e. Word  A  ->  ( # `
 T )  e.  ZZ )
38373ad2ant2 1010 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( # `  T )  e.  ZZ )
3938ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  -> 
( # `  T )  e.  ZZ )
40 fzosubel3 11702 . . . . . . . . 9  |-  ( ( x  e.  ( (
# `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) )  /\  ( # `  T
)  e.  ZZ )  ->  ( x  -  ( # `  S ) )  e.  ( 0..^ ( # `  T
) ) )
4135, 39, 40syl2anc 661 . . . . . . . 8  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  -> 
( x  -  ( # `
 S ) )  e.  ( 0..^ (
# `  T )
) )
42 fvco2 5865 . . . . . . . 8  |-  ( ( T  Fn  ( 0..^ ( # `  T
) )  /\  (
x  -  ( # `  S ) )  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( F  o.  T ) `  ( x  -  ( # `
 S ) ) )  =  ( F `
 ( T `  ( x  -  ( # `
 S ) ) ) ) )
4328, 41, 42syl2anc 661 . . . . . . 7  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( F  o.  T ) `  (
x  -  ( # `  S ) ) )  =  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )
442oveq2d 6206 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( x  -  ( # `
 ( F  o.  S ) ) )  =  ( x  -  ( # `  S ) ) )
4544fveq2d 5793 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( ( F  o.  T ) `  (
x  -  ( # `  ( F  o.  S
) ) ) )  =  ( ( F  o.  T ) `  ( x  -  ( # `
 S ) ) ) )
4645ad2antrr 725 . . . . . . 7  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( F  o.  T ) `  (
x  -  ( # `  ( F  o.  S
) ) ) )  =  ( ( F  o.  T ) `  ( x  -  ( # `
 S ) ) ) )
47 iffalse 3897 . . . . . . . 8  |-  ( -.  x  e.  ( 0..^ ( # `  S
) )  ->  if ( x  e.  (
0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )  =  ( F `
 ( T `  ( x  -  ( # `
 S ) ) ) ) )
4847adantl 466 . . . . . . 7  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  ->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )  =  ( F `
 ( T `  ( x  -  ( # `
 S ) ) ) ) )
4943, 46, 483eqtr4d 2502 . . . . . 6  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( F  o.  T ) `  (
x  -  ( # `  ( F  o.  S
) ) ) )  =  if ( x  e.  ( 0..^ (
# `  S )
) ,  ( F `
 ( S `  x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) )
5012, 13, 23, 49ifbothda 3922 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  ->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( ( F  o.  S
) `  x ) ,  ( ( F  o.  T ) `  ( x  -  ( # `
 ( F  o.  S ) ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) )
5111, 50eqtrd 2492 . . . 4  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  ->  if ( x  e.  ( 0..^ ( # `  ( F  o.  S )
) ) ,  ( ( F  o.  S
) `  x ) ,  ( ( F  o.  T ) `  ( x  -  ( # `
 ( F  o.  S ) ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) )
5251mpteq2dva 4476 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  ( F  o.  S )
) ) ,  ( ( F  o.  S
) `  x ) ,  ( ( F  o.  T ) `  ( x  -  ( # `
 ( F  o.  S ) ) ) ) ) )  =  ( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) ) )
537, 52eqtr2d 2493 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) )  =  ( x  e.  ( 0..^ ( ( # `  ( F  o.  S )
)  +  ( # `  ( F  o.  T
) ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  ( F  o.  S
) ) ) ,  ( ( F  o.  S ) `  x
) ,  ( ( F  o.  T ) `
 ( x  -  ( # `  ( F  o.  S ) ) ) ) ) ) )
5416ffvelrnda 5942 . . . 4  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  x  e.  ( 0..^ ( # `  S
) ) )  -> 
( S `  x
)  e.  A )
5526, 41ffvelrnd 5943 . . . 4  |-  ( ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  /\  -.  x  e.  (
0..^ ( # `  S
) ) )  -> 
( T `  (
x  -  ( # `  S ) ) )  e.  A )
5654, 55ifclda 3919 . . 3  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  /\  x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) ) )  ->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) )  e.  A
)
57 ccatfval 12375 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
58573adant3 1008 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
59 simp3 990 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  F : A --> B )
6059feqmptd 5843 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
61 fveq2 5789 . . . 4  |-  ( y  =  if ( x  e.  ( 0..^ (
# `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( # `  S ) ) ) )  ->  ( F `  y )  =  ( F `  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
62 fvif 5800 . . . 4  |-  ( F `
 if ( x  e.  ( 0..^ (
# `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( # `  S ) ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) )
6361, 62syl6eq 2508 . . 3  |-  ( y  =  if ( x  e.  ( 0..^ (
# `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( # `  S ) ) ) )  ->  ( F `  y )  =  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) )
6456, 58, 60, 63fmptco 5975 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( F  o.  ( S concat  T ) )  =  ( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( F `  ( S `
 x ) ) ,  ( F `  ( T `  ( x  -  ( # `  S
) ) ) ) ) ) )
65 ffun 5659 . . . . 5  |-  ( F : A --> B  ->  Fun  F )
66653ad2ant3 1011 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  Fun  F )
67 simp1 988 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  S  e. Word  A )
68 cofunexg 6641 . . . 4  |-  ( ( Fun  F  /\  S  e. Word  A )  ->  ( F  o.  S )  e.  _V )
6966, 67, 68syl2anc 661 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( F  o.  S
)  e.  _V )
70 simp2 989 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  ->  T  e. Word  A )
71 cofunexg 6641 . . . 4  |-  ( ( Fun  F  /\  T  e. Word  A )  ->  ( F  o.  T )  e.  _V )
7266, 70, 71syl2anc 661 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( F  o.  T
)  e.  _V )
73 ccatfval 12375 . . 3  |-  ( ( ( F  o.  S
)  e.  _V  /\  ( F  o.  T
)  e.  _V )  ->  ( ( F  o.  S ) concat  ( F  o.  T ) )  =  ( x  e.  ( 0..^ ( ( # `  ( F  o.  S
) )  +  (
# `  ( F  o.  T ) ) ) )  |->  if ( x  e.  ( 0..^ (
# `  ( F  o.  S ) ) ) ,  ( ( F  o.  S ) `  x ) ,  ( ( F  o.  T
) `  ( x  -  ( # `  ( F  o.  S )
) ) ) ) ) )
7469, 72, 73syl2anc 661 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( ( F  o.  S ) concat  ( F  o.  T ) )  =  ( x  e.  ( 0..^ ( ( # `  ( F  o.  S
) )  +  (
# `  ( F  o.  T ) ) ) )  |->  if ( x  e.  ( 0..^ (
# `  ( F  o.  S ) ) ) ,  ( ( F  o.  S ) `  x ) ,  ( ( F  o.  T
) `  ( x  -  ( # `  ( F  o.  S )
) ) ) ) ) )
7553, 64, 743eqtr4d 2502 1  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  F : A --> B )  -> 
( F  o.  ( S concat  T ) )  =  ( ( F  o.  S ) concat  ( F  o.  T ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   _Vcvv 3068   ifcif 3889    |-> cmpt 4448    o. ccom 4942   Fun wfun 5510    Fn wfn 5511   -->wf 5512   ` cfv 5516  (class class class)co 6190   0cc0 9383    + caddc 9386    - cmin 9696   ZZcz 10747  ..^cfzo 11649   #chash 12204  Word cword 12323   concat cconcat 12325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-card 8210  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-n0 10681  df-z 10748  df-uz 10963  df-fz 11539  df-fzo 11650  df-hash 12205  df-word 12331  df-concat 12333
This theorem is referenced by:  cats1co  12585  frmdgsum  15642  frmdup1  15644  efginvrel2  16328  frgpuplem  16373  frgpup1  16376
  Copyright terms: Public domain W3C validator