MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatass Structured version   Unicode version

Theorem ccatass 12278
Description: Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatass  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  T ) concat  U )  =  ( S concat 
( T concat  U )
) )

Proof of Theorem ccatass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatcl 12266 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S concat  T )  e. Word  B )
213adant3 1008 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( S concat  T )  e. Word  B
)
3 simp3 990 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  U  e. Word  B )
4 ccatcl 12266 . . . . 5  |-  ( ( ( S concat  T )  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  T ) concat  U )  e. Word  B )
52, 3, 4syl2anc 661 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  T ) concat  U )  e. Word  B )
6 wrdf 12232 . . . 4  |-  ( ( ( S concat  T ) concat  U )  e. Word  B  ->  ( ( S concat  T
) concat  U ) : ( 0..^ ( # `  (
( S concat  T ) concat  U ) ) ) --> B )
7 ffn 5552 . . . 4  |-  ( ( ( S concat  T ) concat  U ) : ( 0..^ ( # `  (
( S concat  T ) concat  U ) ) ) --> B  ->  ( ( S concat  T ) concat  U )  Fn  ( 0..^ ( # `  ( ( S concat  T
) concat  U ) ) ) )
85, 6, 73syl 20 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  T ) concat  U )  Fn  ( 0..^ ( # `  (
( S concat  T ) concat  U ) ) ) )
9 ccatlen 12267 . . . . . . 7  |-  ( ( ( S concat  T )  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( ( S concat  T ) concat  U ) )  =  ( ( # `  ( S concat  T ) )  +  ( # `  U ) ) )
102, 3, 9syl2anc 661 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( ( S concat  T ) concat  U ) )  =  ( ( # `  ( S concat  T ) )  +  ( # `  U ) ) )
11 ccatlen 12267 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  ( S concat  T ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
12113adant3 1008 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( S concat  T
) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
1312oveq1d 6101 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  ( S concat  T ) )  +  ( # `  U
) )  =  ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )
1410, 13eqtrd 2469 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( ( S concat  T ) concat  U ) )  =  ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) )
1514oveq2d 6102 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
0..^ ( # `  (
( S concat  T ) concat  U ) ) )  =  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )
1615fneq2d 5495 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( ( S concat  T
) concat  U )  Fn  (
0..^ ( # `  (
( S concat  T ) concat  U ) ) )  <->  ( ( S concat  T ) concat  U )  Fn  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) ) )
178, 16mpbid 210 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  T ) concat  U )  Fn  ( 0..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) )
18 simp1 988 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  S  e. Word  B )
19 ccatcl 12266 . . . . . 6  |-  ( ( T  e. Word  B  /\  U  e. Word  B )  ->  ( T concat  U )  e. Word  B )
20193adant1 1006 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( T concat  U )  e. Word  B
)
21 ccatcl 12266 . . . . 5  |-  ( ( S  e. Word  B  /\  ( T concat  U )  e. Word  B )  ->  ( S concat  ( T concat  U ) )  e. Word  B )
2218, 20, 21syl2anc 661 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( S concat  ( T concat  U ) )  e. Word  B )
23 wrdf 12232 . . . 4  |-  ( ( S concat  ( T concat  U
) )  e. Word  B  ->  ( S concat  ( T concat  U ) ) : ( 0..^ ( # `  ( S concat  ( T concat  U ) ) ) ) --> B )
24 ffn 5552 . . . 4  |-  ( ( S concat  ( T concat  U
) ) : ( 0..^ ( # `  ( S concat  ( T concat  U ) ) ) ) --> B  ->  ( S concat  ( T concat  U ) )  Fn  ( 0..^ ( # `  ( S concat  ( T concat  U ) ) ) ) )
2522, 23, 243syl 20 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( S concat  ( T concat  U ) )  Fn  ( 0..^ ( # `  ( S concat  ( T concat  U ) ) ) ) )
26 ccatlen 12267 . . . . . . . 8  |-  ( ( T  e. Word  B  /\  U  e. Word  B )  ->  ( # `  ( T concat  U ) )  =  ( ( # `  T
)  +  ( # `  U ) ) )
27263adant1 1006 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( T concat  U
) )  =  ( ( # `  T
)  +  ( # `  U ) ) )
2827oveq2d 6102 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )  +  ( # `  ( T concat  U ) ) )  =  ( ( # `  S )  +  ( ( # `  T
)  +  ( # `  U ) ) ) )
29 ccatlen 12267 . . . . . . 7  |-  ( ( S  e. Word  B  /\  ( T concat  U )  e. Word  B )  ->  ( # `
 ( S concat  ( T concat  U ) ) )  =  ( ( # `  S )  +  (
# `  ( T concat  U ) ) ) )
3018, 20, 29syl2anc 661 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( S concat  ( T concat  U ) ) )  =  ( ( # `  S )  +  (
# `  ( T concat  U ) ) ) )
31 lencl 12241 . . . . . . . . 9  |-  ( S  e. Word  B  ->  ( # `
 S )  e. 
NN0 )
32313ad2ant1 1009 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 S )  e. 
NN0 )
3332nn0cnd 10630 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 S )  e.  CC )
34 lencl 12241 . . . . . . . . 9  |-  ( T  e. Word  B  ->  ( # `
 T )  e. 
NN0 )
35343ad2ant2 1010 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 T )  e. 
NN0 )
3635nn0cnd 10630 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 T )  e.  CC )
37 lencl 12241 . . . . . . . . 9  |-  ( U  e. Word  B  ->  ( # `
 U )  e. 
NN0 )
38373ad2ant3 1011 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 U )  e. 
NN0 )
3938nn0cnd 10630 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 U )  e.  CC )
4033, 36, 39addassd 9400 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) )  =  ( ( # `  S
)  +  ( (
# `  T )  +  ( # `  U
) ) ) )
4128, 30, 403eqtr4d 2479 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 ( S concat  ( T concat  U ) ) )  =  ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) )
4241oveq2d 6102 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
0..^ ( # `  ( S concat  ( T concat  U ) ) ) )  =  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )
4342fneq2d 5495 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  ( T concat  U ) )  Fn  (
0..^ ( # `  ( S concat  ( T concat  U ) ) ) )  <->  ( S concat  ( T concat  U ) )  Fn  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) ) )
4425, 43mpbid 210 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( S concat  ( T concat  U ) )  Fn  ( 0..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) )
4532nn0zd 10737 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 S )  e.  ZZ )
46 fzospliti 11573 . . . . 5  |-  ( ( x  e.  ( 0..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) )  /\  ( # `  S
)  e.  ZZ )  ->  ( x  e.  ( 0..^ ( # `  S ) )  \/  x  e.  ( (
# `  S )..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) ) )
4746ancoms 453 . . . 4  |-  ( ( ( # `  S
)  e.  ZZ  /\  x  e.  ( 0..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) )  ->  ( x  e.  ( 0..^ ( # `  S ) )  \/  x  e.  ( (
# `  S )..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) ) )
4845, 47sylan 471 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )  -> 
( x  e.  ( 0..^ ( # `  S
) )  \/  x  e.  ( ( # `  S
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )
49 simpl1 991 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  ->  S  e. Word  B )
50 simpl2 992 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  ->  T  e. Word  B )
51 simpr 461 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  ->  x  e.  ( 0..^ ( # `  S
) ) )
52 ccatval1 12268 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( 0..^ ( # `  S ) ) )  ->  ( ( S concat  T ) `  x
)  =  ( S `
 x ) )
5349, 50, 51, 52syl3anc 1218 . . . . 5  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( S concat  T
) `  x )  =  ( S `  x ) )
542adantr 465 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  -> 
( S concat  T )  e. Word  B )
55 simpl3 993 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  ->  U  e. Word  B )
56 uzid 10867 . . . . . . . . . . 11  |-  ( (
# `  S )  e.  ZZ  ->  ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) ) )
5745, 56syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 S )  e.  ( ZZ>= `  ( # `  S
) ) )
58 uzaddcl 10903 . . . . . . . . . 10  |-  ( ( ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) )  /\  ( # `  T )  e.  NN0 )  ->  ( ( # `  S )  +  (
# `  T )
)  e.  ( ZZ>= `  ( # `  S ) ) )
5957, 35, 58syl2anc 661 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )  +  ( # `  T
) )  e.  (
ZZ>= `  ( # `  S
) ) )
60 fzoss2 11569 . . . . . . . . 9  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( # `  S
) )  ->  (
0..^ ( # `  S
) )  C_  (
0..^ ( ( # `  S )  +  (
# `  T )
) ) )
6159, 60syl 16 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
0..^ ( # `  S
) )  C_  (
0..^ ( ( # `  S )  +  (
# `  T )
) ) )
6212oveq2d 6102 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
0..^ ( # `  ( S concat  T ) ) )  =  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) )
6361, 62sseqtr4d 3386 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
0..^ ( # `  S
) )  C_  (
0..^ ( # `  ( S concat  T ) ) ) )
6463sselda 3349 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  ->  x  e.  ( 0..^ ( # `  ( S concat  T ) ) ) )
65 ccatval1 12268 . . . . . 6  |-  ( ( ( S concat  T )  e. Word  B  /\  U  e. Word  B  /\  x  e.  ( 0..^ ( # `  ( S concat  T ) ) ) )  -> 
( ( ( S concat  T ) concat  U ) `  x )  =  ( ( S concat  T ) `
 x ) )
6654, 55, 64, 65syl3anc 1218 . . . . 5  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( ( S concat  T ) concat  U ) `  x )  =  ( ( S concat  T ) `
 x ) )
6720adantr 465 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  -> 
( T concat  U )  e. Word  B )
68 ccatval1 12268 . . . . . 6  |-  ( ( S  e. Word  B  /\  ( T concat  U )  e. Word  B  /\  x  e.  ( 0..^ ( # `  S
) ) )  -> 
( ( S concat  ( T concat  U ) ) `  x )  =  ( S `  x ) )
6949, 67, 51, 68syl3anc 1218 . . . . 5  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( S concat  ( T concat  U ) ) `  x )  =  ( S `  x ) )
7053, 66, 693eqtr4d 2479 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( # `  S
) ) )  -> 
( ( ( S concat  T ) concat  U ) `  x )  =  ( ( S concat  ( T concat  U ) ) `  x ) )
7135nn0zd 10737 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 T )  e.  ZZ )
7245, 71zaddcld 10743 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )  +  ( # `  T
) )  e.  ZZ )
73 fzospliti 11573 . . . . . . 7  |-  ( ( x  e.  ( (
# `  S )..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) )  /\  ( ( # `  S )  +  (
# `  T )
)  e.  ZZ )  ->  ( x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) )  \/  x  e.  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )
7473ancoms 453 . . . . . 6  |-  ( ( ( ( # `  S
)  +  ( # `  T ) )  e.  ZZ  /\  x  e.  ( ( # `  S
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )  -> 
( x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) )  \/  x  e.  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )
7572, 74sylan 471 . . . . 5  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) )  ->  ( x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) )  \/  x  e.  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )
76 simpl1 991 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  S  e. Word  B )
77 simpl2 992 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  T  e. Word  B )
78 simpr 461 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) ) )
79 ccatval2 12269 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) ) )  -> 
( ( S concat  T
) `  x )  =  ( T `  ( x  -  ( # `
 S ) ) ) )
8076, 77, 78, 79syl3anc 1218 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( ( S concat  T ) `  x
)  =  ( T `
 ( x  -  ( # `  S ) ) ) )
81 simpl3 993 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  U  e. Word  B )
82 fzosubel3 11593 . . . . . . . . . . 11  |-  ( ( x  e.  ( (
# `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) )  /\  ( # `  T
)  e.  ZZ )  ->  ( x  -  ( # `  S ) )  e.  ( 0..^ ( # `  T
) ) )
8382ancoms 453 . . . . . . . . . 10  |-  ( ( ( # `  T
)  e.  ZZ  /\  x  e.  ( ( # `
 S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( x  -  ( # `  S
) )  e.  ( 0..^ ( # `  T
) ) )
8471, 83sylan 471 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( x  -  ( # `  S
) )  e.  ( 0..^ ( # `  T
) ) )
85 ccatval1 12268 . . . . . . . . 9  |-  ( ( T  e. Word  B  /\  U  e. Word  B  /\  (
x  -  ( # `  S ) )  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) )  =  ( T `  ( x  -  ( # `
 S ) ) ) )
8677, 81, 84, 85syl3anc 1218 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) )  =  ( T `  ( x  -  ( # `
 S ) ) ) )
8780, 86eqtr4d 2472 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( ( S concat  T ) `  x
)  =  ( ( T concat  U ) `  ( x  -  ( # `
 S ) ) ) )
882adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( S concat  T )  e. Word  B )
89 fzoss1 11568 . . . . . . . . . . . 12  |-  ( (
# `  S )  e.  ( ZZ>= `  0 )  ->  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) )  C_  (
0..^ ( ( # `  S )  +  (
# `  T )
) ) )
90 nn0uz 10887 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
9189, 90eleq2s 2529 . . . . . . . . . . 11  |-  ( (
# `  S )  e.  NN0  ->  ( ( # `
 S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
C_  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) )
9232, 91syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
C_  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) )
9392, 62sseqtr4d 3386 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
C_  ( 0..^ (
# `  ( S concat  T ) ) ) )
9493sselda 3349 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  x  e.  ( 0..^ ( # `  ( S concat  T ) ) ) )
9588, 81, 94, 65syl3anc 1218 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( (
( S concat  T ) concat  U ) `  x )  =  ( ( S concat  T ) `  x
) )
9620adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( T concat  U )  e. Word  B )
97 uzid 10867 . . . . . . . . . . . . 13  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ZZ  ->  ( ( # `
 S )  +  ( # `  T
) )  e.  (
ZZ>= `  ( ( # `  S )  +  (
# `  T )
) ) )
9872, 97syl 16 . . . . . . . . . . . 12  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )  +  ( # `  T
) )  e.  (
ZZ>= `  ( ( # `  S )  +  (
# `  T )
) ) )
99 uzaddcl 10903 . . . . . . . . . . . 12  |-  ( ( ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( ( # `
 S )  +  ( # `  T
) ) )  /\  ( # `  U )  e.  NN0 )  -> 
( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) )  e.  ( ZZ>= `  ( ( # `
 S )  +  ( # `  T
) ) ) )
10098, 38, 99syl2anc 661 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) )  e.  (
ZZ>= `  ( ( # `  S )  +  (
# `  T )
) ) )
101 fzoss2 11569 . . . . . . . . . . 11  |-  ( ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) )  e.  (
ZZ>= `  ( ( # `  S )  +  (
# `  T )
) )  ->  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
C_  ( ( # `  S )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )
102100, 101syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
C_  ( ( # `  S )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )
10328, 40eqtr4d 2472 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )  +  ( # `  ( T concat  U ) ) )  =  ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) )
104103oveq2d 6102 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  ( T concat  U ) ) ) )  =  ( ( # `  S
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )
105102, 104sseqtr4d 3386 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
C_  ( ( # `  S )..^ ( (
# `  S )  +  ( # `  ( T concat  U ) ) ) ) )
106105sselda 3349 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  ( T concat  U ) ) ) ) )
107 ccatval2 12269 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  ( T concat  U )  e. Word  B  /\  x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  ( T concat  U ) ) ) ) )  ->  ( ( S concat  ( T concat  U ) ) `  x )  =  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) ) )
10876, 96, 106, 107syl3anc 1218 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( ( S concat  ( T concat  U ) ) `  x )  =  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) ) )
10987, 95, 1083eqtr4d 2479 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( # `  S
)  +  ( # `  T ) ) ) )  ->  ( (
( S concat  T ) concat  U ) `  x )  =  ( ( S concat 
( T concat  U )
) `  x )
)
11012oveq2d 6102 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
x  -  ( # `  ( S concat  T ) ) )  =  ( x  -  ( (
# `  S )  +  ( # `  T
) ) ) )
111110adantr 465 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( x  -  ( # `  ( S concat  T ) ) )  =  ( x  -  ( ( # `  S
)  +  ( # `  T ) ) ) )
112 elfzoelz 11545 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( (
# `  S )  +  ( # `  T
) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  ->  x  e.  ZZ )
113112zcnd 10740 . . . . . . . . . . . 12  |-  ( x  e.  ( ( (
# `  S )  +  ( # `  T
) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  ->  x  e.  CC )
114113adantl 466 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  x  e.  CC )
11533adantr 465 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( # `  S
)  e.  CC )
11636adantr 465 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( # `  T
)  e.  CC )
117114, 115, 116subsub4d 9742 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( ( x  -  ( # `  S
) )  -  ( # `
 T ) )  =  ( x  -  ( ( # `  S
)  +  ( # `  T ) ) ) )
118111, 117eqtr4d 2472 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( x  -  ( # `  ( S concat  T ) ) )  =  ( ( x  -  ( # `  S
) )  -  ( # `
 T ) ) )
119118fveq2d 5688 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( U `  ( x  -  ( # `
 ( S concat  T
) ) ) )  =  ( U `  ( ( x  -  ( # `  S ) )  -  ( # `  T ) ) ) )
120 simpl2 992 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  T  e. Word  B
)
121 simpl3 993 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  U  e. Word  B
)
12240oveq2d 6102 . . . . . . . . . . . 12  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  =  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( # `  S )  +  ( ( # `  T
)  +  ( # `  U ) ) ) ) )
123122eleq2d 2504 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
x  e.  ( ( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  <->  x  e.  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( # `  S )  +  ( ( # `  T
)  +  ( # `  U ) ) ) ) ) )
124123biimpa 484 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  x  e.  ( ( ( # `  S
)  +  ( # `  T ) )..^ ( ( # `  S
)  +  ( (
# `  T )  +  ( # `  U
) ) ) ) )
12545adantr 465 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( # `  S
)  e.  ZZ )
12671adantr 465 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( # `  T
)  e.  ZZ )
12738nn0zd 10737 . . . . . . . . . . . 12  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( # `
 U )  e.  ZZ )
12871, 127zaddcld 10743 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  T )  +  ( # `  U
) )  e.  ZZ )
129128adantr 465 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( ( # `  T )  +  (
# `  U )
)  e.  ZZ )
130 fzosubel2 11592 . . . . . . . . . 10  |-  ( ( x  e.  ( ( ( # `  S
)  +  ( # `  T ) )..^ ( ( # `  S
)  +  ( (
# `  T )  +  ( # `  U
) ) ) )  /\  ( ( # `  S )  e.  ZZ  /\  ( # `  T
)  e.  ZZ  /\  ( ( # `  T
)  +  ( # `  U ) )  e.  ZZ ) )  -> 
( x  -  ( # `
 S ) )  e.  ( ( # `  T )..^ ( (
# `  T )  +  ( # `  U
) ) ) )
131124, 125, 126, 129, 130syl13anc 1220 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( x  -  ( # `  S ) )  e.  ( (
# `  T )..^ ( ( # `  T
)  +  ( # `  U ) ) ) )
132 ccatval2 12269 . . . . . . . . 9  |-  ( ( T  e. Word  B  /\  U  e. Word  B  /\  (
x  -  ( # `  S ) )  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  U )
) ) )  -> 
( ( T concat  U
) `  ( x  -  ( # `  S
) ) )  =  ( U `  (
( x  -  ( # `
 S ) )  -  ( # `  T
) ) ) )
133120, 121, 131, 132syl3anc 1218 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) )  =  ( U `  ( ( x  -  ( # `  S ) )  -  ( # `  T ) ) ) )
134119, 133eqtr4d 2472 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( U `  ( x  -  ( # `
 ( S concat  T
) ) ) )  =  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) ) )
1352adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( S concat  T
)  e. Word  B )
13612, 13oveq12d 6104 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( # `  ( S concat  T ) )..^ ( ( # `  ( S concat  T ) )  +  ( # `  U
) ) )  =  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )
137136eleq2d 2504 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
x  e.  ( (
# `  ( S concat  T ) )..^ ( (
# `  ( S concat  T ) )  +  (
# `  U )
) )  <->  x  e.  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )
138137biimpar 485 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  x  e.  ( ( # `  ( S concat  T ) )..^ ( ( # `  ( S concat  T ) )  +  ( # `  U
) ) ) )
139 ccatval2 12269 . . . . . . . 8  |-  ( ( ( S concat  T )  e. Word  B  /\  U  e. Word  B  /\  x  e.  ( ( # `  ( S concat  T ) )..^ ( ( # `  ( S concat  T ) )  +  ( # `  U
) ) ) )  ->  ( ( ( S concat  T ) concat  U
) `  x )  =  ( U `  ( x  -  ( # `
 ( S concat  T
) ) ) ) )
140135, 121, 138, 139syl3anc 1218 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( ( ( S concat  T ) concat  U
) `  x )  =  ( U `  ( x  -  ( # `
 ( S concat  T
) ) ) ) )
141 simpl1 991 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  S  e. Word  B
)
14220adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( T concat  U
)  e. Word  B )
143 fzoss1 11568 . . . . . . . . . . 11  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( # `  S
) )  ->  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  C_  ( ( # `  S
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )
14459, 143syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  C_  ( ( # `  S
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )
145144, 104sseqtr4d 3386 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) )  C_  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  ( T concat  U ) ) ) ) )
146145sselda 3349 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  ( T concat  U ) ) ) ) )
147141, 142, 146, 107syl3anc 1218 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( ( S concat 
( T concat  U )
) `  x )  =  ( ( T concat  U ) `  (
x  -  ( # `  S ) ) ) )
148134, 140, 1473eqtr4d 2479 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( ( # `  S
)  +  ( # `  T ) )..^ ( ( ( # `  S
)  +  ( # `  T ) )  +  ( # `  U
) ) ) )  ->  ( ( ( S concat  T ) concat  U
) `  x )  =  ( ( S concat 
( T concat  U )
) `  x )
)
149109, 148jaodan 783 . . . . 5  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  ( x  e.  ( ( # `  S
)..^ ( ( # `  S )  +  (
# `  T )
) )  \/  x  e.  ( ( ( # `  S )  +  (
# `  T )
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )  ->  ( ( ( S concat  T ) concat  U
) `  x )  =  ( ( S concat 
( T concat  U )
) `  x )
)
15075, 149syldan 470 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
( # `  S )..^ ( ( ( # `  S )  +  (
# `  T )
)  +  ( # `  U ) ) ) )  ->  ( (
( S concat  T ) concat  U ) `  x )  =  ( ( S concat 
( T concat  U )
) `  x )
)
15170, 150jaodan 783 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  ( x  e.  ( 0..^ ( # `  S
) )  \/  x  e.  ( ( # `  S
)..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) ) )  ->  ( ( ( S concat  T ) concat  U
) `  x )  =  ( ( S concat 
( T concat  U )
) `  x )
)
15248, 151syldan 470 . 2  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  /\  x  e.  (
0..^ ( ( (
# `  S )  +  ( # `  T
) )  +  (
# `  U )
) ) )  -> 
( ( ( S concat  T ) concat  U ) `  x )  =  ( ( S concat  ( T concat  U ) ) `  x ) )
15317, 44, 152eqfnfvd 5793 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  U  e. Word  B )  ->  (
( S concat  T ) concat  U )  =  ( S concat 
( T concat  U )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3321    Fn wfn 5406   -->wf 5407   ` cfv 5411  (class class class)co 6086   CCcc 9272   0cc0 9274    + caddc 9277    - cmin 9587   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853  ..^cfzo 11540   #chash 12095  Word cword 12213   concat cconcat 12215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-hash 12096  df-word 12221  df-concat 12223
This theorem is referenced by:  ccatw2s1ass  12300  cats1cat  12480  frmdmnd  15526  efginvrel2  16213  efgredleme  16229  efgredlemc  16231  efgcpbllemb  16241  signstfvc  26923  numclwlk1lem2foa  30627  numclwlk1lem2fo  30631
  Copyright terms: Public domain W3C validator