MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrex2v Structured version   Unicode version

Theorem cbvrex2v 3102
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
Hypotheses
Ref Expression
cbvrex2v.1  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
cbvrex2v.2  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
cbvrex2v  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
Distinct variable groups:    x, A    z, A    w, B    x, B, y    z, B, y    ch, w    ch, x    ph, z    ps, y
Allowed substitution hints:    ph( x, y, w)    ps( x, z, w)    ch( y, z)    A( y, w)

Proof of Theorem cbvrex2v
StepHypRef Expression
1 cbvrex2v.1 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
21rexbidv 2978 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  ph  <->  E. y  e.  B  ch ) )
32cbvrexv 3094 . 2  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. y  e.  B  ch )
4 cbvrex2v.2 . . . 4  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
54cbvrexv 3094 . . 3  |-  ( E. y  e.  B  ch  <->  E. w  e.  B  ps )
65rexbii 2969 . 2  |-  ( E. z  e.  A  E. y  e.  B  ch  <->  E. z  e.  A  E. w  e.  B  ps )
73, 6bitri 249 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   E.wrex 2818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1597  df-nf 1600  df-sb 1712  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823
This theorem is referenced by:  omeu  7244  oeeui  7261  eroveu  7416  genpv  9387  bezoutlem3  14049  bezoutlem4  14050  bezout  14051  4sqlem2  14338  vdwnn  14387  efgrelexlema  16617  dyadmax  21852  2sqlem9  23491  2sq  23494  legov  23814  pstmfval  27668  nn0prpwlem  30035  isbnd2  30174  fourierdlem42  31740  fourierdlem54  31752
  Copyright terms: Public domain W3C validator