MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralf Structured version   Unicode version

Theorem cbvralf 2984
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvralf.1  |-  F/_ x A
cbvralf.2  |-  F/_ y A
cbvralf.3  |-  F/ y
ph
cbvralf.4  |-  F/ x ps
cbvralf.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralf  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )

Proof of Theorem cbvralf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1755 . . . 4  |-  F/ z ( x  e.  A  ->  ph )
2 cbvralf.1 . . . . . 6  |-  F/_ x A
32nfcri 2557 . . . . 5  |-  F/ x  z  e.  A
4 nfs1v 2237 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfim 1980 . . . 4  |-  F/ x
( z  e.  A  ->  [ z  /  x ] ph )
6 eleq1 2488 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
7 sbequ12 2052 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
86, 7imbi12d 321 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  ->  ph )  <->  ( z  e.  A  ->  [ z  /  x ] ph ) ) )
91, 5, 8cbval 2080 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. z
( z  e.  A  ->  [ z  /  x ] ph ) )
10 cbvralf.2 . . . . . 6  |-  F/_ y A
1110nfcri 2557 . . . . 5  |-  F/ y  z  e.  A
12 cbvralf.3 . . . . . 6  |-  F/ y
ph
1312nfsb 2240 . . . . 5  |-  F/ y [ z  /  x ] ph
1411, 13nfim 1980 . . . 4  |-  F/ y ( z  e.  A  ->  [ z  /  x ] ph )
15 nfv 1755 . . . 4  |-  F/ z ( y  e.  A  ->  ps )
16 eleq1 2488 . . . . 5  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
17 sbequ 2175 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
18 cbvralf.4 . . . . . . 7  |-  F/ x ps
19 cbvralf.5 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2018, 19sbie 2207 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
2117, 20syl6bb 264 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
2216, 21imbi12d 321 . . . 4  |-  ( z  =  y  ->  (
( z  e.  A  ->  [ z  /  x ] ph )  <->  ( y  e.  A  ->  ps )
) )
2314, 15, 22cbval 2080 . . 3  |-  ( A. z ( z  e.  A  ->  [ z  /  x ] ph )  <->  A. y ( y  e.  A  ->  ps )
)
249, 23bitri 252 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
25 df-ral 2713 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
26 df-ral 2713 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2724, 25, 263bitr4i 280 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187   A.wal 1435   F/wnf 1661   [wsb 1790    e. wcel 1872   F/_wnfc 2550   A.wral 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ex 1658  df-nf 1662  df-sb 1791  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ral 2713
This theorem is referenced by:  cbvrexf  2985  cbvral  2986  reusv2lem4  4564  reusv2  4566  ffnfvf  6002  nnwof  11169  nnindf  28326  scottexf  32312  scott0f  32313  evth2f  37246  evthf  37258  stoweidlem14  37751  stoweidlem28  37765  stoweidlem59  37797
  Copyright terms: Public domain W3C validator