MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralf Unicode version

Theorem cbvralf 2886
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvralf.1  |-  F/_ x A
cbvralf.2  |-  F/_ y A
cbvralf.3  |-  F/ y
ph
cbvralf.4  |-  F/ x ps
cbvralf.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralf  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )

Proof of Theorem cbvralf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1626 . . . 4  |-  F/ z ( x  e.  A  ->  ph )
2 cbvralf.1 . . . . . 6  |-  F/_ x A
32nfcri 2534 . . . . 5  |-  F/ x  z  e.  A
4 nfs1v 2155 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfim 1828 . . . 4  |-  F/ x
( z  e.  A  ->  [ z  /  x ] ph )
6 eleq1 2464 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
7 sbequ12 1940 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
86, 7imbi12d 312 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  ->  ph )  <->  ( z  e.  A  ->  [ z  /  x ] ph ) ) )
91, 5, 8cbval 2037 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. z
( z  e.  A  ->  [ z  /  x ] ph ) )
10 cbvralf.2 . . . . . 6  |-  F/_ y A
1110nfcri 2534 . . . . 5  |-  F/ y  z  e.  A
12 cbvralf.3 . . . . . 6  |-  F/ y
ph
1312nfsb 2158 . . . . 5  |-  F/ y [ z  /  x ] ph
1411, 13nfim 1828 . . . 4  |-  F/ y ( z  e.  A  ->  [ z  /  x ] ph )
15 nfv 1626 . . . 4  |-  F/ z ( y  e.  A  ->  ps )
16 eleq1 2464 . . . . 5  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
17 sbequ 2109 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
18 cbvralf.4 . . . . . . 7  |-  F/ x ps
19 cbvralf.5 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2018, 19sbie 2087 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
2117, 20syl6bb 253 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
2216, 21imbi12d 312 . . . 4  |-  ( z  =  y  ->  (
( z  e.  A  ->  [ z  /  x ] ph )  <->  ( y  e.  A  ->  ps )
) )
2314, 15, 22cbval 2037 . . 3  |-  ( A. z ( z  e.  A  ->  [ z  /  x ] ph )  <->  A. y ( y  e.  A  ->  ps )
)
249, 23bitri 241 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
25 df-ral 2671 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
26 df-ral 2671 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2724, 25, 263bitr4i 269 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1546   F/wnf 1550   [wsb 1655    e. wcel 1721   F/_wnfc 2527   A.wral 2666
This theorem is referenced by:  cbvrexf  2887  cbvral  2888  reusv2lem4  4686  reusv2  4688  ffnfvf  5854  nnwof  10499  evth2f  27553  evthf  27565  stoweidlem14  27630  stoweidlem28  27644  stoweidlem59  27675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671
  Copyright terms: Public domain W3C validator