MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralf Structured version   Visualization version   Unicode version

Theorem cbvralf 3025
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvralf.1  |-  F/_ x A
cbvralf.2  |-  F/_ y A
cbvralf.3  |-  F/ y
ph
cbvralf.4  |-  F/ x ps
cbvralf.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralf  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )

Proof of Theorem cbvralf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1772 . . . 4  |-  F/ z ( x  e.  A  ->  ph )
2 cbvralf.1 . . . . . 6  |-  F/_ x A
32nfcri 2597 . . . . 5  |-  F/ x  z  e.  A
4 nfs1v 2277 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfim 2014 . . . 4  |-  F/ x
( z  e.  A  ->  [ z  /  x ] ph )
6 eleq1 2528 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
7 sbequ12 2094 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
86, 7imbi12d 326 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  ->  ph )  <->  ( z  e.  A  ->  [ z  /  x ] ph ) ) )
91, 5, 8cbval 2125 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. z
( z  e.  A  ->  [ z  /  x ] ph ) )
10 cbvralf.2 . . . . . 6  |-  F/_ y A
1110nfcri 2597 . . . . 5  |-  F/ y  z  e.  A
12 cbvralf.3 . . . . . 6  |-  F/ y
ph
1312nfsb 2280 . . . . 5  |-  F/ y [ z  /  x ] ph
1411, 13nfim 2014 . . . 4  |-  F/ y ( z  e.  A  ->  [ z  /  x ] ph )
15 nfv 1772 . . . 4  |-  F/ z ( y  e.  A  ->  ps )
16 eleq1 2528 . . . . 5  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
17 sbequ 2216 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
18 cbvralf.4 . . . . . . 7  |-  F/ x ps
19 cbvralf.5 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2018, 19sbie 2248 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
2117, 20syl6bb 269 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
2216, 21imbi12d 326 . . . 4  |-  ( z  =  y  ->  (
( z  e.  A  ->  [ z  /  x ] ph )  <->  ( y  e.  A  ->  ps )
) )
2314, 15, 22cbval 2125 . . 3  |-  ( A. z ( z  e.  A  ->  [ z  /  x ] ph )  <->  A. y ( y  e.  A  ->  ps )
)
249, 23bitri 257 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
25 df-ral 2754 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
26 df-ral 2754 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
2724, 25, 263bitr4i 285 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189   A.wal 1453   F/wnf 1678   [wsb 1808    e. wcel 1898   F/_wnfc 2590   A.wral 2749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-ex 1675  df-nf 1679  df-sb 1809  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ral 2754
This theorem is referenced by:  cbvrexf  3026  cbvral  3027  reusv2lem4  4624  reusv2  4626  ffnfvf  6078  nnwof  11259  nnindf  28434  scottexf  32457  scott0f  32458  evth2f  37377  evthf  37389  stoweidlem14  37975  stoweidlem28  37989  stoweidlem59  38021
  Copyright terms: Public domain W3C validator