MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvraldva2 Structured version   Unicode version

Theorem cbvraldva2 2956
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
cbvraldva2.2  |-  ( (
ph  /\  x  =  y )  ->  A  =  B )
Assertion
Ref Expression
cbvraldva2  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. y  e.  B  ch )
)
Distinct variable groups:    y, A    ps, y    x, B    ch, x    ph, x, y
Allowed substitution hints:    ps( x)    ch( y)    A( x)    B( y)

Proof of Theorem cbvraldva2
StepHypRef Expression
1 simpr 461 . . . . 5  |-  ( (
ph  /\  x  =  y )  ->  x  =  y )
2 cbvraldva2.2 . . . . 5  |-  ( (
ph  /\  x  =  y )  ->  A  =  B )
31, 2eleq12d 2511 . . . 4  |-  ( (
ph  /\  x  =  y )  ->  (
x  e.  A  <->  y  e.  B ) )
4 cbvraldva2.1 . . . 4  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
53, 4imbi12d 320 . . 3  |-  ( (
ph  /\  x  =  y )  ->  (
( x  e.  A  ->  ps )  <->  ( y  e.  B  ->  ch )
) )
65cbvaldva 1980 . 2  |-  ( ph  ->  ( A. x ( x  e.  A  ->  ps )  <->  A. y ( y  e.  B  ->  ch ) ) )
7 df-ral 2725 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
8 df-ral 2725 . 2  |-  ( A. y  e.  B  ch  <->  A. y ( y  e.  B  ->  ch )
)
96, 7, 83bitr4g 288 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. y  e.  B  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756   A.wral 2720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1587  df-nf 1590  df-cleq 2436  df-clel 2439  df-ral 2725
This theorem is referenced by:  cbvraldva  2958  tfrlem3a  6841  mreexexlemd  14587
  Copyright terms: Public domain W3C validator