Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12v Structured version   Unicode version

Theorem cbvoprab12v 6246
 Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1
Assertion
Ref Expression
cbvoprab12v
Distinct variable groups:   ,,,,   ,,   ,,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1674 . 2
2 nfv 1674 . 2
3 nfv 1674 . 2
4 nfv 1674 . 2
5 cbvoprab12v.1 . 2
61, 2, 3, 4, 5cbvoprab12 6245 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1370  coprab 6177 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497  ax-nul 4505  ax-pr 4615 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-rab 2801  df-v 3056  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-sn 3962  df-pr 3964  df-op 3968  df-opab 4435  df-oprab 6180 This theorem is referenced by:  cpnnen  13599
 Copyright terms: Public domain W3C validator