MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1v Structured version   Visualization version   Unicode version

Theorem cbvopab1v 4448
Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypothesis
Ref Expression
cbvopab1v.1  |-  ( x  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvopab1v  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
Distinct variable groups:    x, y    y, z    ph, z    ps, x
Allowed substitution hints:    ph( x, y)    ps( y, z)

Proof of Theorem cbvopab1v
StepHypRef Expression
1 nfv 1765 . 2  |-  F/ z
ph
2 nfv 1765 . 2  |-  F/ x ps
3 cbvopab1v.1 . 2  |-  ( x  =  z  ->  ( ph 
<->  ps ) )
41, 2, 3cbvopab1 4445 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    = wceq 1448   {copab 4432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-rab 2746  df-v 3015  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3700  df-if 3850  df-sn 3937  df-pr 3939  df-op 3943  df-opab 4434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator