MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpt2 Structured version   Unicode version

Theorem cbvmpt2 6164
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpt2.1  |-  F/_ z C
cbvmpt2.2  |-  F/_ w C
cbvmpt2.3  |-  F/_ x D
cbvmpt2.4  |-  F/_ y D
cbvmpt2.5  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
Assertion
Ref Expression
cbvmpt2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z
Allowed substitution hints:    C( x, y, z, w)    D( x, y, z, w)

Proof of Theorem cbvmpt2
StepHypRef Expression
1 nfcv 2578 . 2  |-  F/_ z B
2 nfcv 2578 . 2  |-  F/_ x B
3 cbvmpt2.1 . 2  |-  F/_ z C
4 cbvmpt2.2 . 2  |-  F/_ w C
5 cbvmpt2.3 . 2  |-  F/_ x D
6 cbvmpt2.4 . 2  |-  F/_ y D
7 eqidd 2443 . 2  |-  ( x  =  z  ->  B  =  B )
8 cbvmpt2.5 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
91, 2, 3, 4, 5, 6, 7, 8cbvmpt2x 6163 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   F/_wnfc 2565    e. cmpt2 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-opab 4350  df-oprab 6094  df-mpt2 6095
This theorem is referenced by:  cbvmpt2v  6165  fnmpt2ovd  6650  fmpt2co  6655  mpt2curryd  6787  fvmpt2curryd  6789  xpf1o  7472  cnfcomlem  7931  cnfcomlemOLD  7939  fseqenlem1  8193  gsumdixpOLD  16699  gsumdixp  16700  evlslem4OLD  17589  evlslem4  17590  madugsum  18448  cnmpt2t  19245  cnmptk2  19258  fmucnd  19866  fsum2cn  20446  relexpsucr  27331  fmuldfeqlem1  29761
  Copyright terms: Public domain W3C validator