![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviun | Structured version Visualization version Unicode version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
cbviun.1 |
![]() ![]() ![]() ![]() |
cbviun.2 |
![]() ![]() ![]() ![]() |
cbviun.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbviun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviun.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 1 | nfcri 2596 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
3 | cbviun.2 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | 3 | nfcri 2596 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
5 | cbviun.3 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | eleq2d 2524 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | cbvrex 3027 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | abbii 2577 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-iun 4293 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | df-iun 4293 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 8, 9, 10 | 3eqtr4i 2493 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ral 2753 df-rex 2754 df-iun 4293 |
This theorem is referenced by: cbviunv 4330 disjxiun 4412 funiunfvf 6178 mpt2mptsx 6882 dmmpt2ssx 6884 fmpt2x 6885 ovmptss 6903 iunfi 7887 fsum2dlem 13879 fsumcom2 13883 fsumiun 13929 fprod2dlem 14082 fprodcom2 14086 gsumcom2 17655 fiuncmp 20467 ovolfiniun 22502 ovoliunlem3 22505 ovoliun 22506 finiunmbl 22545 volfiniun 22548 iunmbl 22554 limciun 22897 iuneqfzuzlem 37594 fsumiunss 37691 sge0iunmpt 38297 dmmpt2ssx2 40390 |
Copyright terms: Public domain | W3C validator |