MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvfo Structured version   Unicode version

Theorem cbvfo 5993
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
cbvfo.1  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvfo  |-  ( F : A -onto-> B  -> 
( A. x  e.  A  ph  <->  A. y  e.  B  ps )
)
Distinct variable groups:    x, y, A    y, B    x, F, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    B( x)

Proof of Theorem cbvfo
StepHypRef Expression
1 fofn 5622 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 cbvfo.1 . . . . . 6  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
32bicomd 201 . . . . 5  |-  ( ( F `  x )  =  y  ->  ( ps 
<-> 
ph ) )
43eqcoms 2446 . . . 4  |-  ( y  =  ( F `  x )  ->  ( ps 
<-> 
ph ) )
54ralrn 5846 . . 3  |-  ( F  Fn  A  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ph ) )
61, 5syl 16 . 2  |-  ( F : A -onto-> B  -> 
( A. y  e. 
ran  F ps  <->  A. x  e.  A  ph ) )
7 forn 5623 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87raleqdv 2923 . 2  |-  ( F : A -onto-> B  -> 
( A. y  e. 
ran  F ps  <->  A. y  e.  B  ps )
)
96, 8bitr3d 255 1  |-  ( F : A -onto-> B  -> 
( A. x  e.  A  ph  <->  A. y  e.  B  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369   A.wral 2715   ran crn 4841    Fn wfn 5413   -onto->wfo 5416   ` cfv 5418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fo 5424  df-fv 5426
This theorem is referenced by:  cbvexfo  5994  cocan2  5996  f1oweALT  6561  supisolem  7720  qtopeu  19289  deg1leb  21566  dchrelbas4  22582  cnpcon  27119  cocanfo  28611
  Copyright terms: Public domain W3C validator