Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexdva Structured version   Visualization version   Unicode version

Theorem cbvexdva 2138
 Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1
Assertion
Ref Expression
cbvexdva
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvexdva
StepHypRef Expression
1 nfv 1769 . 2
2 nfvd 1770 . 2
3 cbvaldva.1 . . 3
43ex 441 . 2
51, 2, 4cbvexd 2132 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376  wex 1671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676 This theorem is referenced by:  cbvrexdva2  3010  isinf  7803
 Copyright terms: Public domain W3C validator