Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvex2v Structured version   Visualization version   Unicode version

Theorem cbvex2v 2136
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
cbval2v.1
Assertion
Ref Expression
cbvex2v
Distinct variable groups:   ,,   ,,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbvex2v
StepHypRef Expression
1 nfv 1769 . 2
2 nfv 1769 . 2
3 nfv 1769 . 2
4 nfv 1769 . 2
5 cbval2v.1 . 2
61, 2, 3, 4, 5cbvex2 2134 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376  wex 1671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676 This theorem is referenced by:  cbvex4v  2139  funop1  39166
 Copyright terms: Public domain W3C validator