Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveu Structured version   Unicode version

Theorem cbveu 2278
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cbveu.1
cbveu.2
cbveu.3
Assertion
Ref Expression
cbveu

Proof of Theorem cbveu
StepHypRef Expression
1 cbveu.1 . . 3
21sb8eu 2275 . 2
3 cbveu.2 . . . 4
4 cbveu.3 . . . 4
53, 4sbie 2175 . . 3
65eubii 2264 . 2
72, 6bitri 251 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 186  wnf 1639  wsb 1765  weu 2240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028 This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244 This theorem is referenced by:  cbvmo  2279  cbvreu  3034  cbvreucsf  3409  tz6.12f  5869  f1ompt  6033  climeu  13529  initoeu2  15621
 Copyright terms: Public domain W3C validator