Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalvw Structured version   Unicode version

Theorem cbvalvw 1863
 Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
Hypothesis
Ref Expression
cbvalvw.1
Assertion
Ref Expression
cbvalvw
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvalvw
StepHypRef Expression
1 ax-5 1752 . 2
2 ax-5 1752 . 2
3 ax-5 1752 . 2
4 ax-5 1752 . 2
5 cbvalvw.1 . 2
61, 2, 3, 4, 5cbvalw 1862 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187  wal 1435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843 This theorem depends on definitions:  df-bi 188  df-ex 1658 This theorem is referenced by:  cbvexvw  1864  hba1w  1868  ax12wdemo  1885
 Copyright terms: Public domain W3C validator